Files
Pynomicon/classes/gpsmath.py

93 lines
2.4 KiB
Python

from math import sin, cos, asin, sqrt, radians, atan2
earth_flatening = 1.0/298.257223563
earth_radius = 6378137.0
#############################################################################
# GPS stuff
#############################################################################
PI = 4 * atan2(1, 1)
MPERDEG = (111.13285 * 1000.0)
RADIUS = earth_radius # meters
def deg2rad(deg):
global PI
return ((deg)*PI/180.0)
def rad2deg(rad):
global PI
return ((rad)*180.0/PI)
def gps_bearing(lat1, lon1, lat2, lon2):
lat1 = deg2rad(lat1)
lon1 = deg2rad(lon1)
lat2 = deg2rad(lat2)
lon2 = deg2rad(lon2)
y = sin(lon2-lon1) * cos(lat2)
x = cos(lat1)*sin(lat2) - sin(lat1)*cos(lat2)*cos(lon2-lon1)
bearing = rad2deg( atan2(y, x) )
return (bearing + 360.0) % 360.0
def gps_distance(lat1, lon1, lat2, lon2):
global RADIUS
lat1 = deg2rad(lat1)
lon1 = deg2rad(lon1)
lat2 = deg2rad(lat2)
lon2 = deg2rad(lon2)
a = sin((lat2-lat1)/2)**2 + cos(lat1) * cos(lat2) * sin((lon2-lon1)/2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
return RADIUS * c
def gps_xy(lat1, lon1, lat2, lon2):
global MPERDEG
mperdeg = MPERDEG * cos(deg2rad(lat2+lat1)/2)
x = (lon2 - lon1) * mperdeg
y = (lat2 - lat1) * MPERDEG
return (x, y)
def gps_xydistance(lat1, lon1, lat2, lon2):
global MPERDEG
mperdeg = MPERDEG * cos(deg2rad(lat2+lat1)/2)
x = (lon2 - lon1) * mperdeg
y = (lat2 - lat1) * MPERDEG
dist = sqrt(x*x + y*y)
return (x, y, dist)
#
#
#
def haversine(lat1, lon1, lat2, lon2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
# 6367 km is the radius of the Earth
return earth_radius * c
def roydistance(lat1, lon1, lat2, lon2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# Roy's method
f1 = (1.0 - earth_flatening)
top = (pow((lon2-lon1), 2) * pow(cos(lat1), 2)) + pow(lat2-lat1, 2)
bot = pow(sin(lat1), 2) + (pow(f1, 2) * pow(cos(lat1), 2))
return f1 * earth_radius * sqrt(top/bot)