
Not eXactly C
(NXC)

Programmer's Guide

Version 1.0.1 b30

June 6, 2007

by John Hansen

Page i

Contents
1 Introduction... 1
2 The NXC Language .. 2

2.1 Lexical Rules .. 2
2.1.1 Comments ... 2
2.1.2 Whitespace.. 2
2.1.3 Numerical Constants... 3
2.1.4 Identifiers and Keywords.. 3

2.2 Program Structure ... 3
2.2.1 Tasks ... 3
2.2.2 Functions... 4
2.2.3 Variables ... 6
2.2.4 Structs ... 7
2.2.5 Arrays.. 8

2.3 Statements ... 9
2.3.1 Variable Declaration ... 9
2.3.2 Assignment ... 9
2.3.3 Control Structures ... 10
2.3.4 The asm Statement.. 12
2.3.5 Other Statements... 14

2.4 Expressions ... 14
2.4.1 Conditions ... 15

2.5 The Preprocessor... 16
2.5.1 #include... 16
2.5.2 #define... 16
2.5.3 ## (Concatenation).. 17
2.5.4 Conditional Compilation... 17

3 NXC API... 18
3.1 General Features ... 18

3.1.1 Timing Functions .. 18
3.1.2 Program Control Functions... 19
3.1.3 String Functions .. 20
3.1.4 Array Functions .. 21
3.1.5 Numeric Functions.. 22

3.2 Input Module... 23
3.2.1 Types and Modes .. 23
3.2.2 Sensor Information.. 27
3.2.3 IOMap Offsets .. 30

3.3 Output Module .. 30
3.3.1 Convenience Calls .. 34
3.3.2 Primitive Calls .. 39
3.3.3 IOMap Offsets .. 41

3.4 IO Map Addresses... 42
3.5 Sound Module... 43

3.5.1 High-level functions.. 43

Page ii

3.5.2 Low-level functions .. 44
3.5.3 IOMap Offsets .. 46

3.6 IOCtrl Module... 47
3.6.1 IOMap Offsets .. 47

3.7 Display module ... 47
3.7.1 High-level functions.. 48
3.7.2 Low-level functions .. 49
3.7.3 IOMap Offsets .. 51

3.8 Loader Module.. 51
3.8.1 IOMap Offsets .. 56

3.9 Command Module .. 56
3.9.1 IOMap Offsets .. 56

3.10 Button Module .. 56
3.10.1 High-level functions.. 57
3.10.2 Low-level functions .. 57
3.10.3 IOMap Offsets .. 59

3.11 UI Module... 59
3.11.1 IOMap Offsets .. 63

3.12 LowSpeed Module .. 63
3.12.1 High-level functions.. 65
3.12.2 Low-level functions .. 66
3.12.3 IOMap Offsets .. 70

3.13 Comm Module .. 70
3.13.1 High-level functions.. 71
3.13.2 Low-level functions .. 75
3.13.3 IOMap Offsets .. 85

Page iii

List of Tables
Table 1. NXC Keywords... 3
Table 2. Variable Types.. 6
Table 3. Operators... 10
Table 4. ASM Keywords .. 13
Table 5. Expressions ... 15
Table 6. Conditions... 16
Table 7. Input Module Constants.. 23
Table 8. Sensor Type Constants.. 24
Table 9. Sensor Mode Constants .. 24
Table 10. Sensor Configuration Constants ... 24
Table 11. Sensor Field Constants.. 25
Table 12. Input Module IOMap Offsets ... 30
Table 13. Output Module Constants ... 30
Table 14. Output Field Constants ... 33
Table 15. UpdateFlag Constants ... 33
Table 16. OutputMode Constants ... 34
Table 17. RunState Constants ... 34
Table 18. RegMode Constants.. 34
Table 19. Reset Constants... 34
Table 20. Output Port Constants... 35
Table 21. Output Module IOMap Offsets... 42
Table 22. IOMA Constants ... 42
Table 23. Sound Module Constants .. 43
Table 24. Sound Flags Constants.. 44
Table 25. Sound State Constants .. 44
Table 26. Sound Mode Constants ... 44
Table 27. Miscellaneous Sound Constants ... 45
Table 28. Sound Module IOMap Offsets.. 46
Table 29. IOCtrl Module Constants.. 47
Table 30. IOCtrl Module IOMap Offsets ... 47
Table 31. Display Module Constants.. 47
Table 32. Display Flags Constants.. 49
Table 33. Display Module IOMap Offsets ... 51
Table 34. Loader Module Constants... 52
Table 35. Loader Result Codes... 52
Table 36. Loader Module IOMap Offsets... 56
Table 37. Command Module Constants.. 56
Table 38. Command Module IOMap Offsets ... 56
Table 39. Button Module Constants ... 56
Table 40. Button Constants... 57
Table 41. Button State Constants.. 57
Table 42. Button Module IOMap Offsets ... 59
Table 43. UI Module Constants .. 59
Table 44. UI Command Flags Constants .. 60

Page iv

Table 45. UI State Constants .. 60
Table 46. UI Button Constants.. 60
Table 47. UI Bluetooth State Constants.. 60
Table 48. UI Module IOMap Offsets.. 63
Table 49. LowSpeed Module Constants ... 63
Table 50. Lowspeed (I2C) Return Value Constants ... 64
Table 51. Low Speed State Constants... 66
Table 52. Low Speed Channel State Constants .. 66
Table 53. Low Speed Mode Constants ... 66
Table 54. Low Speed Error Type Constants... 67
Table 55. LowSpeed Module IOMap Offsets... 70
Table 56. Comm Module Constants ... 70
Table 57. Comm Miscellaneous Constants... 75
Table 58. Comm BtState Constants .. 76
Table 59. Comm BtStateStatus Constants .. 76
Table 60. Comm BtHwStatus Constants .. 76
Table 61. Comm HsFlags Constants... 76
Table 62. Comm HsState Constants ... 76
Table 63. Comm DeviceStatus Constants... 76
Table 64. Comm Module Interface Constants .. 77
Table 65. Comm Module IOMap Offsets ... 86

NXC Programmer's Guide

Page 1

1 Introduction
NXC stands for Not eXactly C. It is a simple language for programming the LEGO
MINDSTORMS NXT product. The NXT has a bytecode interpreter (provided by
LEGO), which can be used to execute programs. The NXC compiler translates a source
program into NXT bytecodes, which can then be executed on the target itself. Although
the preprocessor and control structures of NXC are very similar to C, NXC is not a
general-purpose programming language - there are many restrictions that stem from
limitations of the NXT bytecode interpreter.

Logically, NXC is defined as two separate pieces. The NXC language describes the
syntax to be used in writing programs. The NXC Application Programming Interface
(API) describes the system functions, constants, and macros that can be used by
programs. This API is defined in a special file known as a "header file" which is, by
default, automatically included when compiling a program.

This document describes both the NXC language and the NXC API. In short, it provides
the information needed to write NXC programs. Since there are different interfaces for
NXC, this document does not describe how to use any specific NXC implementation
(such as the command-line compiler or Bricx Command Center). Refer to the
documentation provided with the NXC tool, such as the NXC User Manual, for
information specific to that implementation.

For up-to-date information and documentation for NXC, visit the NXC website at
http://bricxcc.sourceforge.net/nxc/.

NXC Programmer's Guide

Page 2

2 The NXC Language
This section describes the NXC language itself. This includes the lexical rules used by
the compiler, the structure programs, statements, and expressions, and the operation of
the preprocessor.

NXC is a case-sensitive language just like C and C++. That means that the identifier
"xYz" is not the same identifier as "Xyz". Similarly, the "if" statement begins with the
keyword "if" but "iF", "If", or "IF" are all just valid identifiers – not keywords.

2.1 Lexical Rules
The lexical rules describe how NXC breaks a source file into individual tokens. This
includes the way comments are written, the handling of whitespace, and valid characters
for identifiers.

2.1.1 Comments
Two forms of comments are supported in NXC. The first form (traditional C comments)
begin with /* and end with */. They may span multiple lines, but do not nest:

/* this is a comment */

/* this is a two
 line comment */

/* another comment...
 /* trying to nest...
 ending the inner comment...*/
 this text is no longer a comment! */

The second form of comments begins with // and ends with a newline (sometimes
known as C++ style comments).

// a single line comment

The compiler ignores comments. Their only purpose is to allow the programmer to
document the source code.

2.1.2 Whitespace
Whitespace (spaces, tabs, and newlines) is used to separate tokens and to make programs
more readable. As long as the tokens are distinguishable, adding or subtracting
whitespace has no effect on the meaning of a program. For example, the following lines
of code both have the same meaning:

x=2;
x = 2 ;

Some of the C++ operators consist of multiple characters. In order to preserve these
tokens whitespace must not be inserted within them. In the example below, the first line

NXC Programmer's Guide

Page 3

uses a right shift operator ('>>'), but in the second line the added space causes the '>'
symbols to be interpreted as two separate tokens and thus generate an error.

x = 1 >> 4; // set x to 1 right shifted by 4 bits

x = 1 > > 4; // error

2.1.3 Numerical Constants
Numerical constants may be written in either decimal or hexadecimal form. Decimal
constants consist of one or more decimal digits. Hexadecimal constants start with 0x or
0X followed by one or more hexadecimal digits.

x = 10; // set x to 10
x = 0x10; // set x to 16 (10 hex)

2.1.4 Identifiers and Keywords
Identifiers are used for variable, task, function, and subroutine names. The first character
of an identifier must be an upper or lower case letter or the underscore ('_'). Remaining
characters may be letters, numbers, and an underscore.

A number of potential identifiers are reserved for use in the NXC language itself. These
reserved words are call keywords and may not be used as identifiers. A complete list of
keywords appears below:

__RETURN__
__RETVAL__
__STRRETVAL__
__TMPBYTE__
__TMPWORD__
__TMPLONG__
abs
asm
bool
break
byte

case
char
const
continue
default
do
else
false
for
goto
if

inline
int
long
mutex
repeat
return
short
sign
start
string
struct

sub
switch
task
true
typedef
unsigned
until
void
while

Table 1. NXC Keywords

2.2 Program Structure
An NXC program is composed of code blocks and variables. There are two distinct types
of code blocks: tasks and functions. Each type of code block has its own unique features,
but they share a common structure.

2.2.1 Tasks
The NXT supports multi-threading, so a task in NXC directly corresponds to an NXT
thread. Tasks are defined using the task keyword using the following syntax:

NXC Programmer's Guide

Page 4

task name()
{
 // the task's code is placed here
}

The name of the task may be any legal identifier. A program must always have at least
one task - named "main" - which is started whenever the program is run. The maximum
number of tasks is 256.

The body of a task consists of a list of statements. Scheduling dependant tasks using the
Precedes or Follows API function is the primary mechanism supported by the NXT for
starting other tasks concurrently. Tasks may also be started using the start statement.
Tasks cannot be stopped by another task, however. The only way to stop a task is by
stopping all tasks using the Stop function or by a task stopping on its own via the ExitTo
function or by task execution simply reaching the end of the task.

2.2.2 Functions
It is often helpful to group a set of statements together into a single function, which can
then be called as needed. NXC supports functions with arguments and return values.
Functions are defined using the following syntax:

[inline] return_type name(argument_list)
{

// body of the function
}

The return type should be the type of data returned. In the C programming language,
functions are specified with the type of data they return. Functions that do not return data
are specified to return void.

The argument list may be empty, or may contain one or more argument definitions. An
argument is defined by its type followed by its name. Commas separate multiple
arguments. All values are represented as bool, char, byte, int, short, long, unsigned int,
unsigned long, strings, struct types, or arrays of any type. NXC also supports passing
argument types by value, by constant value, by reference, and by constant reference.

When arguments are passed by value from the calling function to the callee the compiler
must allocate a temporary variable to hold the argument. There are no restrictions on the
type of value that may be used. However, since the function is working with a copy of the
actual argument, the caller will not see any changes it makes to the value. In the example
below, the function foo attempts to set the value of its argument to 2. This is perfectly
legal, but since foo is working on a copy of the original argument, the variable y from
main task remains unchanged.

NXC Programmer's Guide

Page 5

void foo(int x)
{

x = 2;
}

task main()
{

int y = 1; // y is now equal to 1
foo(y); // y is still equal to 1!

}

The second type of argument, const arg_type, is also passed by value, but with the
restriction that only constant values (e.g. numbers) may be used. This is rather important
since there are a few NXT functions that only work with constant arguments.

void foo(const int x)
{

PlaySound(x); // ok
x = 1; // error - cannot modify argument

}

task main()
{

foo(2); // ok
foo(4*5); // ok - expression is still constant
foo(x); // error - x is not a constant

}

The third type, arg_type &, passes arguments by reference rather than by value. This
allows the callee to modify the value and have those changes visible in the caller.
However, only variables may be used when calling a function using arg_type &
arguments:

void foo(int &x)
{

x = 2;
}

task main()
{

int y = 1; // y is equal to 1

foo(y); // y is now equal to 2
foo(2); // error - only variables allowed

}

The fourth type, const arg_type &, is rather unusual. It is also passed by reference,
but with the restriction that the callee is not allowed to modify the value. Because of this
restriction, the compiler is able to pass anything (not just variables) to functions using
this type of argument. In general this is the most efficient way to pass arguments in NXC.

Functions must be invoked with the correct number (and type) of arguments. The
example below shows several different legal and illegal calls to function foo:

NXC Programmer's Guide

Page 6

void foo(int bar, const int baz)
{

// do something here...
}

task main()
{

int x; // declare variable x

foo(1, 2); // ok
foo(x, 2); // ok
foo(2, x); // error - 2nd argument not constant!
foo(2); // error - wrong number of arguments!

}

NXC functions may optionally be marked as inline functions. This means that each call
to a function will result in another copy of the function's code being included in the
program. Unless used judiciously, inline functions can lead to excessive code size.

If a function is not marked as inline then an actual NXT subroutine is created and the call
to the function in NXC code will result in a subroutine call to the NXT subroutine. The
total number of non-inline functions (aka subroutines) and tasks must not exceed 256.

2.2.3 Variables
All variables in NXC are of the following types:

Type Name Information
bool 8 bit unsigned
byte, unsigned char 8 bit unsigned
char 8 bit signed
unsigned int 16 bit unsigned
short, int 16 bit signed
unsigned long 32 bit unsigned
long 32 bit signed
mutex Special type used for exclusive code access
string Array of byte
struct User-defined structure types
Arrays Arrays of any type

Table 2. Variable Types

Variables are declared using the keyword for the desired type followed by a comma-
separated list of variable names and terminated by a semicolon (';'). Optionally, an initial
value for each variable may be specified using an equals sign ('=') after the variable
name. Several examples appear below:

int x; // declare x
bool y,z; // declare y and z
long a=1,b; // declare a and b, initialize a to 1

NXC Programmer's Guide

Page 7

Global variables are declared at the program scope (outside of any code block). Once
declared, they may be used within all tasks, functions, and subroutines. Their scope
begins at declaration and ends at the end of the program.

Local variables may be declared within tasks and functions. Such variables are only
accessible within the code block in which they are defined. Specifically, their scope
begins with their declaration and ends at the end of their code block. In the case of local
variables, a compound statement (a group of statements bracketed by '{' and '}') is
considered a block:

int x; // x is global

task main()
{

int y; // y is local to task main
x = y; // ok
{ // begin compound statement

int z; // local z declared
y = z; // ok

}
y = z; // error - z no longer in scope

}

task foo()
{

x = 1; // ok
y = 2; // error - y is not global

}

2.2.4 Structs
NXC supports user-defined aggregate types known as structs. These are declared very
much like you declare structs in a C program.

struct car
{
 string car_type;
 int manu_year;
};

struct person
{
 string name;
 int age;
 car vehicle;
};

myType fred = 23;
person myPerson;

NXC Programmer's Guide

Page 8

After you have defined the structure type you can use the new type to declare a variable
or nested within another structure type declaration. Members (or fields) within the struct
are accessed using a dot notation.

 myPerson.age = 40;

 anotherPerson = myPerson;

 fooBar.car_type = "honda";
 fooBar.manu_year = anotherPerson.age;

You can assign structs of the same type but the compiler will complain if the types do not
match.

2.2.5 Arrays
NXC also support arrays. Arrays are declared the same way as ordinary variables, but
with an open and close bracket following the variable name.

int my_array[]; // declare an array with 0 elements

To declare arrays with more than one dimension simply add more pairs of square
brackets. The maximum number of dimensions supported in NXC is 4.

bool my_array[][]; // declare a 2-dimensional array

Global arrays with one dimension can be initialized at the point of declaration using the
following syntax:

int X[] = {1, 2, 3, 4}, Y[]={10, 10}; // 2 arrays

The elements of an array are identified by their position within the array (called an
index). The first element has an index of 0, the second has index 1, etc. For example:

my_array[0] = 123; // set first element to 123

my_array[1] = my_array[2]; // copy third into second

Currently there are some limitations on how arrays can be used. Some of these limitations
will likely be removed in future versions of NXC.

To initialize local arrays or arrays with multiple dimensions it is necessary to use the
ArrayInit function. The following example shows how to initialize a two-dimensional
array using ArrayInit. It also demonstrates some of the supported array API functions
and expressions.

task main()
{
 int myArray[][];
 int myVector[];
 byte fooArray[][][];

 ArrayInit(myVector, 0, 10); // 10 zeros in myVector
 ArrayInit(myArray, myVector, 10); // 10 vectors myArray
 ArrayInit(fooArray, myArray, 2); // 2 myArrays in fooArray

NXC Programmer's Guide

Page 9

 myVector = myArray[1]; // okay as of b25
 fooArray[1] = myArray; // okay as of b25
 myVector[4] = 34;
 myArray[1] = myVector; // okay as of b25

 int ax[], ay[];
 ArrayBuild(ax, 5, 6);
 ArrayBuild(ay, 2, 10, 6, 43);
 int axlen = ArrayLen(ax);
 ArraySubset(ax, ay, 1, 2); // ax = {10, 6}
 if (ax == ay) { // array comparisons supported as of b25
 }
}

2.3 Statements
The body of a code block (task or function) is composed of statements. Statements are
terminated with a semi-colon (';').

2.3.1 Variable Declaration
Variable declaration, as described in the previous section, is one type of statement. It
declares a local variable (with optional initialization) for use within the code block. The
syntax for a variable declaration is:

int variables;

where variables is a comma separated list of names with optional initial value:

name[=expression]

Arrays of variables may also be declared:

int array[][=initializer for global one-dimension arrays];

2.3.2 Assignment
Once declared, variables may be assigned the value of an expression:

variable assign_operator expression;

There are nine different assignment operators. The most basic operator, '=', simply
assigns the value of the expression to the variable. The other operators modify the
variable's value in some other way as shown in the table below

Operator Action
= Set variable to expression
+= Add expression to variable
-= Subtract expression from variable
*= Multiple variable by expression
/= Divide variable by expression
%= Set variable to remainder after dividing by expression
&= Bitwise AND expression into variable
|= Bitwise OR expression into variable

NXC Programmer's Guide

Page 10

^= Bitwise exclusive OR into variable
||= Set variable to absolute value of expression
+-= Set variable to sign (-1,+1,0) of expression
>>= Right shift variable by expression
<<= Left shift variable by expression

Table 3. Operators

Some examples:

x = 2; // set x to 2
y = 7; // set y to 7
x += y; // x is 9, y is still 7

2.3.3 Control Structures
The simplest control structure is a compound statement. This is a list of statements
enclosed within curly braces ('{' and '}'):

{
x = 1;
y = 2;

}

Although this may not seem very significant, it plays a crucial role in building more
complicated control structures. Many control structures expect a single statement as their
body. By using a compound statement, the same control structure can be used to control
multiple statements.

The if statement evaluates a condition. If the condition is true it executes one statement
(the consequence). An optional second statement (the alternative) is executed if the
condition is false. The two syntaxes for an if statement is shown below.

if (condition) consequence
if (condition) consequence else alternative

Note that the condition is enclosed in parentheses. Examples are shown below. Note how
a compound statement is used in the last example to allow two statements to be executed
as the consequence of the condition.

if (x==1) y = 2;
if (x==1) y = 3; else y = 4;
if (x==1) { y = 1; z = 2; }

The while statement is used to construct a conditional loop. The condition is evaluated,
and if true the body of the loop is executed, then the condition is tested again. This
process continues until the condition becomes false (or a break statement is executed).
The syntax for a while loop appears below:

while (condition) body

It is very common to use a compound statement as the body of a loop:

while(x < 10)
{

x = x+1;

NXC Programmer's Guide

Page 11

y = y*2;
}

A variant of the while loop is the do-while loop. Its syntax is:

do body while (condition)

The difference between a while loop and a do-while loop is that the do-while loop
always executes the body at least once, whereas the while loop may not execute it at all.

Another kind of loop is the for loop:

for(stmt1 ; condition ; stmt2) body

A for loop always executes stmt1, then it repeatedly checks the condition and while it
remains true executes the body followed by stmt2. The for loop is equivalent to:

stmt1;
while(condition)
{

body
stmt2;

}

The repeat statement executes a loop a specified number of times:

repeat (expression) body

The expression determines how many times the body will be executed. Note: It is only
evaluated a single time and then the body is repeated that number of times. This is
different from both the while and do-while loops which evaluate their condition each
time through the loop.

A switch statement can be used to execute one of several different blocks of code
depending on the value of an expression. One or more case labels precede each block of
code. Each case must be a constant and unique within the switch statement. The switch
statement evaluates the expression then looks for a matching case label. It will then
execute any statements following the matching case until either a break statement or the
end of the switch is reached. A single default label may also be used - it will match any
value not already appearing in a case label. Technically, a switch statement has the
following syntax:

switch (expression) body

The case and default labels are not statements in themselves - they are labels that precede
statements. Multiple labels can precede the same statement. These labels have the
following syntax

case constant_expression :
default :

A typical switch statement might look like this:

NXC Programmer's Guide

Page 12

switch(x)
{

case 1:
// do something when X is 1
break;

case 2:
case 3:

// do something else when x is 2 or 3
break;

default:
// do this when x is not 1, 2, or 3
break;

}

NXC also supports using string types in the switch expression and constant strings in case
labels.

The goto statement forces a program to jump to the specified location. Statements in a
program can be labeled by preceding them with an identifier and a colon. A goto
statement then specifies the label that the program should jump to. For example, this is
how an infinite loop that increments a variable could be implemented using goto:

my_loop:
x++;
goto my_loop;

The goto statement should be used sparingly and cautiously. In almost every case,
control structures such as if, while, and switch make a program much more readable
and maintainable than using goto.

NXC also defines the until macro which provides a convenient alternative to the
while loop. The actual definition of until is:

#define until(c) while(!(c))

In other words, until will continue looping until the condition becomes true. It is most
often used in conjunction with an empty body statement:

until(SENSOR_1 == 1); // wait for sensor to be pressed

2.3.4 The asm Statement
The asm statement is used to define many of the NXC API calls. The syntax of the
statement is:

asm {
one or more lines of assembly language
}

The statement simply emits the body of the statement as NeXT Byte Codes (NBC) code
and passes it directly to the NBC compiler backend. The asm statement can often be used
to optimize code so that it executes as fast as possible on the NXT firmware. The

NXC Programmer's Guide

Page 13

following example shows an asm block containing variable declarations, labels, and basic
NBC statements as well as comments.

asm {
// jmp __lbl00D5
 dseg segment
 sl0000 slong
 sl0005 slong
 bGTTrue byte
 dseg ends
 mov sl0000, 0x0
 mov sl0005, sl0000
 mov sl0000, 0x1
 cmp GT, bGTTrue, sl0005, sl0000
 set bGTTrue, FALSE
 brtst EQ, __lbl00D5, bGTTrue
 __lbl00D5:
}

A few NXC keywords have meaning only within an asm statement. These keywords
provide a means for returning string or scalar values from asm statements and for using
temporary integer variables of byte, word, and long sizes.

ASM Keyword Meaning
__RETURN__ Used to return a value other than __RETVAL__ or

__STRRETVAL__
__RETVAL__ Writing to this 4-byte value returns it to the calling program
__STRRETVAL__ Writing to this string value returns it to the calling program
__TMPBYTE__ Use this temporary variable to write and return single byte values
__TMPWORD__ Use this temporary variable to write and return 2-byte values
__TMPLONG__ Use this temporary variable to write and return 4-byte values

Table 4. ASM Keywords

The asm block statement and these special ASM keywords are used throughout the NXC
API. See the NXCDefs.h header file for several examples of how they can be put to use.
To keep the main NXC code as "C-like" as possible and for the sake of better readability
NXC asm block statements can be wrapped in preprocessor macros and placed in custom
header files which are included using #include. The following example demonstrates
using macro wrappers around asm block statements.

#define SetMotorSpeed(port, cc, thresh, fast, slow) \
 asm { \
 set theSpeed, fast \
 brcmp cc, EndIfOut__I__, SV, thresh \
 set theSpeed, slow \
EndIfOut__I__: \
 OnFwd(port, theSpeed) \
 __IncI__ \
}

NXC Programmer's Guide

Page 14

2.3.5 Other Statements
A function call is a statement of the form:

name(arguments);

The arguments list is a comma-separated list of expressions. The number and type of
arguments supplied must match the definition of the function itself.

Tasks may be started with the start statement.

start task_name;

Within loops (such as a while loop) the break statement can be used to exit the loop
and the continue statement can be used to skip to the top of the next iteration of the
loop. The break statement can also be used to exit a switch statement.

break;

continue;

It is possible to cause a function to return before it reaches the end of its code using the
return statement with an optional return value.

return [expression];

Many expressions are not legal statements. One notable exception is expressions
involving the increment (++) or decrement (--) operators.

x++;

The empty statement (just a bare semicolon) is also a legal statement.

2.4 Expressions
Values are the most primitive type of expressions. More complicated expressions are
formed from values using various operators. The NXC language only has two built in
kinds of values: numerical constants and variables.

Numerical constants in the NXT are represented as integers. The type depends on the
value of the constant. NXC internally uses 32 bit signed math for constant expression
evaluation. Numeric constants can be written as either decimal (e.g. 123) or hexadecimal
(e.g. 0xABC). Presently, there is very little range checking on constants, so using a value
larger than expected may have unusual effects.

Two special values are predefined: true and false. The value of false is zero (0),
while the value of true is one (1). The same values hold for relational operators (e.g. <):
when the relation is false the value is 0, otherwise the value is 1.

Values may be combined using operators. Several of the operators may only be used in
evaluating constant expressions, which means that their operands must either be
constants, or expressions involving nothing but constants. The operators are listed here in
order of precedence (highest to lowest).

Operator Description Associativity Restriction Example

NXC Programmer's Guide

Page 15

abs()

sign()

Absolute value

Sign of operand

n/a

n/a

abs(x)

sign(x)

++, -- Post increment, Post
decrement

left variables only x++

-

~

!

Unary minus

Bitwise negation (unary)

Logical negation

right

right

right

constant only

-x

~123

!x

*, /, % Multiplication, division,
modulo

left x * y

+, - Addition, subtraction left x + y

<<, >> Left and right shift left x << 4

<, >,
<=, >=

relational operators left x < y

==, != equal to, not equal to left x == 1

& Bitwise AND left x & y

^ Bitwise XOR left x ^ y

| Bitwise OR left x | y

&& Logical AND left x && y

|| Logical OR left x || y

? : conditional value n/a x==1 ? y : z

Table 5. Expressions

Where needed, parentheses may be used to change the order of evaluation:

x = 2 + 3 * 4; // set x to 14
y = (2 + 3) * 4; // set y to 20

2.4.1 Conditions
Comparing two expressions forms a condition. There are also two constant conditions -
true and false - that always evaluate to true or false respectively. A condition may be
negated with the negation operator, or two conditions combined with the AND and OR
operators. Unlike some compilers NXC does not support what is called "short-circuit"
evaluation of conditions. If you combine conditions using logical operators all parts of
the condition are evaluated before determining the condition value.

The table below summarizes the different types of conditions.

Condition Meaning

True always true

false always false

Expr true if expr is not equal to 0

NXC Programmer's Guide

Page 16

Expr1 == expr2 true if expr1 equals expr2

Expr1 != expr2 true if expr1 is not equal to expr2

Expr1 < expr2 true if one expr1 is less than expr2

Expr1 <= expr2 true if expr1 is less than or equal to expr2

Expr1 > expr2 true if expr1 is greater than expr2

Expr1 >= expr2 true if expr1 is greater than or equal to expr2

! condition logical negation of a condition - true if condition is false

Cond1 && cond2 logical AND of two conditions (true if and only if both conditions are
true)

Cond1 || cond2 logical OR of two conditions (true if and only if at least one of the
conditions are true)

Table 6. Conditions

2.5 The Preprocessor
The preprocessor implements the following directives: #include, #define, #ifdef,
#ifndef, #endif, #undef, ##, #line, #pragma. Its implementation is fairly close
to a standard C preprocessor, so most things that work in a generic C preprocessor should
have the expected effect in NXC. Significant deviations are listed below.

2.5.1 #include
The #include command works as expected, with the caveat that the filename must be
enclosed in double quotes. There is no notion of a system include path, so enclosing a
filename in angle brackets is forbidden.

#include "foo.h" // ok
#include <foo.h> // error!

NXC programs usually begin with #include "NXCDefs.h". This standard header file
includes many important constants and macros which form the core NXC API.

2.5.2 #define
The #define command is used for simple macro substitution. Redefinition of a macro is
an error. The end of the line normally terminates macros, but the newline may be escaped
with the backslash ('\') to allow multi-line macros:

#define foo(x) do { bar(x); \
 baz(x); } while(false)

The #undef directive may be used to remove a macro’s definition.

NXC Programmer's Guide

Page 17

2.5.3 ## (Concatenation)
The ## directive works similar to the C preprocessor. It is replaced by nothing, which
causes tokens on either side to be concatenated together. Because it acts as a separator
initially, it can be used within macro functions to produce identifiers via combination
with parameter values.

2.5.4 Conditional Compilation
Conditional compilation works similar to the C preprocessor. The following preprocessor
directives may be used:

#ifdef symbol
#ifndef symbol
#else
#endif
#if condition
#elif

NXC Programmer's Guide

Page 18

3 NXC API
The NXC API defines a set of constants, functions, values, and macros that provide
access to various capabilities of the NXT such as sensors, outputs, and communication.

The API consists of functions, values, and constants. A function is something that can be
called as a statement. Typically it takes some action or configures some parameter.
Values represent some parameter or quantity and can be used in expressions. Constants
are symbolic names for values that have special meanings for the target. Often, a set of
constants will be used in conjunction with a function.

3.1 General Features

3.1.1 Timing Functions

Wait(time) Function

Make a task sleep for specified amount of time (in 1000ths of a second). The time
argument may be an expression or a constant:

Wait(1000); // wait 1 second
Wait(Random(1000)); // wait random time up to 1 second

CurrentTick() Value

Return an unsigned 32-bit value which is the current system timing value (called a
"tick") in milliseconds.

x = CurrentTick();

FirstTick() Value

Return an unsigned 32-bit value which is the system timing value (called a "tick") in
milliseconds at the time that the program began running.

x = FirstTick();

SleepTimeout() Value

Return the number of minutes that the NXT will remain on before it automatically
shuts down.

x = SleepTimeout();

SleepTimer() Value

Return the number of minutes left in the countdown to zero from the original
SleepTimeout value. When the SleepTimer value reaches zero the NXT will
shutdown.

x = SleepTimer();

NXC Programmer's Guide

Page 19

ResetSleepTimer() Function

Reset the system sleep timer back to the SleepTimeout value. Executing this function
periodically can keep the NXT from shutting down while a program is running.

ResetSleepTimer();

SetSleepTimeout(minutes) Function

Set the NXT sleep timeout value to the specified number of minutes.

SetSleepTimeout(8);

SetSleepTimer(minutes) Function

Set the system sleep timer to the specified number of minutes.

SetSleepTimer(3);

3.1.2 Program Control Functions

Stop(bvalue) Function

Stop the running program if bvalue is true. This will halt the program completely, so
any code following this command will be ignored.

Stop(x == 24); // stop the program if x==24

Acquire(mutex) Function

Acquire the specified mutex variable. If another task already has acquired the mutex
then the current task will be suspended until the mutex is released by the other task.
This function is used to ensure that the current task has exclusive access to a shared
resource, such as the display or a motor. After the current task has finished using the
shared resource the program should call Release to allow other tasks to acquire the
mutex.

Acquire(motorMutex); // make sure we have exclusive access
// use the motors
Release(motorMutex);

Release(mutex) Function

Release the specified mutex variable. Use this to relinquish a mutex so that it can be
acquired by another task. Release should always be called after a matching call to
Acquire and as soon as possible after a shared resource is no longer needed.

Acquire(motorMutex); // make sure we have exclusive access
// use the motors
Release(motorMutex); // release mutex for other tasks

NXC Programmer's Guide

Page 20

Precedes(task1, task2, ..., taskN) Function

Schedule the specified tasks for execution once the current task has completed
executing. The tasks will all execute simultaneously unless other dependencies
prevent them from doing so. Generally this function should be called once within a
task – preferably at the start of the task definition.

Precedes(moving, drawing, playing);

Follows(task1, task2, ..., taskN) Function

Schedule this task to follow the specified tasks so that it will execute once any of the
specified tasks has completed executing. Generally this function should be called
once within a task – preferably at the start of the task definition. If multiple tasks
declare that they follow the same task then they will all execute simultaneously unless
other dependencies prevent them from doing so.

Follows(main);

ExitTo(task) Function

Immediately exit the current task and start executing the specified task.

ExitTo(nextTask);

3.1.3 String Functions

StrToNum(str) Value

Return the numeric value specified by the string passed to the function. If the content
of the string is not a numeric value then this function returns zero.

x = StrToNum(strVal);

StrLen(str) Value

Return the length of the specified string. The length of a string does not include the
null terminator at the end of the string.

x = StrLen(msg); // return the length of msg

StrIndex(str, idx) Value

Return the numeric value of the character in the specified string at the specified
index.

x = StrIndex(msg, 2); // return the value of msg[2]

NumToStr(value) Value

Return the string representation of the specified numeric value.

msg = NumToStr(-2); // returns "-2" in a string

NXC Programmer's Guide

Page 21

StrCat(str1, str2, ..., strN) Value

Return a string which is the result of concatenating all of the string arguments
together.

msg = StrCat("test", "please"); // returns "testplease"

SubStr(string, idx, len) Value

Return a sub-string from the specified input string starting at idx and including the
specified number of characters.

msg = SubStr("test", 1, 2); // returns "es"

StrReplace(string, idx, newStr) Value

Return a string with the part of the string replaced (starting at the specified index)
with the contents of the new string value provided in the third argument.

msg = StrReplace("testing", 3, "xx"); // returns "tesxxng"

Flatten(value) Value

Return a string containing the byte representation of the specified value.

msg = Flatten(48); // returns "0" since 48 == ascii("0")

msg = Flatten(12337); // returns "10" (little-endian)

3.1.4 Array Functions

ByteArrayToStr(arr, out str) Function

Convert the specified array to a string by appending a null terminator to the end of the
array elements. The array must be a one-dimensional array of byte.

ByteArrayToStr(myArray, myStr);

StrToByteArray(str, out arr) Function

Convert the specified string to an array of byte by removing the null terminator at the
end of the string. The output array variable must be a one-dimensional array of byte.

StrToByteArray(myStr, myArray);

ArrayLen(array) Value

Return the length of the specified array.

x = ArrayLen(myArray);

NXC Programmer's Guide

Page 22

ArrayInit(array, value, count) Function

Initialize the array to contain count elements with each element equal to the value
provided. To initialize a multi-dimensional array, the value should be an array of N-1
dimensions, where N is the number of dimensions in the array being initialized.

ArrayInit(myArray, 0, 10); // 10 elements == zero

ArraySubset(out aout, asrc, idx, len) Function

Copy a subset of the source array starting at the specified index and containing the
specified number of elements into the destination array.

ArraySubset(myArray, srcArray, 2, 5); copy 5 elements

ArrayBuild(out aout, src1 [, src2, …, srcN]) Function

Build a new array from the specified source(s). The sources can be of any type. If a
source is an array then all of its elements are added to the output array.

ArrayBuild(myArray, src1, src2);

3.1.5 Numeric Functions

Random(n) Value

Return an unsigned 16-bit random number between 0 and n (exclusive). N can be a
constant or a variable.

x = Random(10); // return a value of 0..9

Random() Value

Return a signed 16-bit random number.

x = Random();

Sqrt(x) Value

Return the square root of the specified value.

x = Sqrt(x);

Sin(degrees) Value

Return the sine of the specified degrees value. The result is 100 times the sine value
(-100..100).

x = Sin(theta);

NXC Programmer's Guide

Page 23

Cos(degrees) Value

Return the cosine of the specified degrees value. The result is 100 times the cosine
value (-100..100).

x = Cos(y);

Asin(value) Value

Return the inverse sine of the specified value (-100..100). The result is degrees (-
90..90).

deg = Asin(80);

Acos(value) Value

Return the inverse cosine of the specified value (-100..100). The result is degrees
(0..180).

deg = Acos(0);

3.2 Input Module
The NXT input module encompasses all sensor inputs except for digital I2C (LowSpeed)
sensors.

Module Constants Value
InputModuleName "Input.mod"
InputModuleID 0x00030001

Table 7. Input Module Constants

There are four sensors, which internally are numbered 0, 1, 2, and 3. This is potentially
confusing since they are externally labeled on the NXT as sensors 1, 2, 3, and 4. To help
mitigate this confusion, the sensor port names S1, S2, S3, and S4 have been defined.
These sensor names may be used in any function that requires a sensor port as an
argument. Alternatively, the NBC port name constants IN_1, IN_2, IN_3, and IN_4
may also be used when a sensor port is required.

Sensor value names SENSOR_1, SENSOR_2, SENSOR_3, and SENSOR_4 have also been
defined. These names may also be used whenever a program wishes to read the current
value of the sensor:

x = SENSOR_1; // read sensor and store value in x

3.2.1 Types and Modes
The sensor ports on the NXT are capable of interfacing to a variety of different sensors. It
is up to the program to tell the NXT what kind of sensor is attached to each port. Calling
SetSensorType configures a sensor's type. There are 12 sensor types, each corresponding
to a specific LEGO RCX or NXT sensor. A thirteenth type (SENSOR_TYPE_NONE) is
used to indicate that no sensor has been configured.

NXC Programmer's Guide

Page 24

In general, a program should configure the type to match the actual sensor. If a sensor
port is configured as the wrong type, the NXT may not be able to read it accurately. Use
either the Sensor Type constants or the NBC Sensor Type constants.

Sensor Type NBC Sensor Type Meaning
SENSOR_TYPE_NONE IN_TYPE_NO_SENSOR no sensor configured
SENSOR_TYPE_TOUCH IN_TYPE_SWITCH NXT or RCX touch sensor
SENSOR_TYPE_TEMPERATURE IN_TYPE_TEMPERATURE RCX temperature sensor
SENSOR_TYPE_LIGHT IN_TYPE_REFLECTION RCX light sensor
SENSOR_TYPE_ROTATION IN_TYPE_ANGLE RCX rotation sensor
SENSOR_TYPE_LIGHT_ACTIVE IN_TYPE_LIGHT_ACTIVE NXT light sensor with light
SENSOR_TYPE_LIGHT_INACTIVE IN_TYPE_LIGHT_INACTIVE NXT light sensor without light
SENSOR_TYPE_SOUND_DB IN_TYPE_SOUND_DB NXT sound sensor with dB scaling
SENSOR_TYPE_SOUND_DBA IN_TYPE_SOUND_DBA NXT sound sensor with dBA scaling
SENSOR_TYPE_CUSTOM IN_TYPE_CUSTOM Custom sensor (unused)
SENSOR_TYPE_LOWSPEED IN_TYPE_LOWSPEED I2C digital sensor
SENSOR_TYPE_LOWSPEED_9V IN_TYPE_LOWSPEED_9V I2C digital sensor (9V power)
SENSOR_TYPE_HIGHSPEED IN_TYPE_HISPEED Highspeed sensor (unused)

Table 8. Sensor Type Constants

The NXT allows a sensor to be configured in different modes. The sensor mode
determines how a sensor's raw value is processed. Some modes only make sense for
certain types of sensors, for example SENSOR_MODE_ROTATION is useful only with
rotation sensors. Call SetSensorMode to set the sensor mode. The possible modes are
shown below. Use either the Sensor Mode constant or the NBC Sensor Mode constant.

Sensor Mode NBC Sensor Mode Meaning
SENSOR_MODE_RAW IN_MODE_RAW raw value from 0 to 1023
SENSOR_MODE_BOOL IN_MODE_BOOLEAN boolean value (0 or 1)
SENSOR_MODE_EDGE IN_MODE_TRANSITIONCNT counts number of boolean transitions
SENSOR_MODE_PULSE IN_MODE_PERIODCOUNTER counts number of boolean periods
SENSOR_MODE_PERCENT IN_MODE_PCTFULLSCALE value from 0 to 100
SENSOR_MODE_FAHRENHEIT IN_MODE_FAHRENHEIT degrees F
SENSOR_MODE_CELSIUS IN_MODE_CELSIUS degrees C
SENSOR_MODE_ROTATION IN_MODE_ANGLESTEP rotation (16 ticks per revolution)

Table 9. Sensor Mode Constants

When using the NXT, it is common to set both the type and mode at the same time. The
SetSensor function makes this process a little easier by providing a single function to call
and a set of standard type/mode combinations.

Sensor Configuration Type Mode
SENSOR_TOUCH SENSOR_TYPE_TOUCH SENSOR_MODE_BOOL
SENSOR_LIGHT SENSOR_TYPE_LIGHT SENSOR_MODE_PERCENT
SENSOR_ROTATION SENSOR_TYPE_ROTATION SENSOR_MODE_ROTATION
SENSOR_CELSIUS SENSOR_TYPE_TEMPERATURE SENSOR_MODE_CELSIUS
SENSOR_FAHRENHEIT SENSOR_TYPE_TEMPERATURE SENSOR_MODE_FAHRENHEIT
SENSOR_PULSE SENSOR_TYPE_TOUCH SENSOR_MODE_PULSE
SENSOR_EDGE SENSOR_TYPE_TOUCH SENSOR_MODE_EDGE

Table 10. Sensor Configuration Constants

The NXT provides a boolean conversion for all sensors - not just touch sensors. This
boolean conversion is normally based on preset thresholds for the raw value. A "low"

NXC Programmer's Guide

Page 25

value (less than 460) is a boolean value of 1. A high value (greater than 562) is a boolean
value of 0. This conversion can be modified: a slope value between 0 and 31 may be
added to a sensor's mode when calling SetSensorMode. If the sensor's value changes
more than the slope value during a certain time (3ms), then the sensor's boolean state will
change. This allows the boolean state to reflect rapid changes in the raw value. A rapid
increase will result in a boolean value of 0, a rapid decrease is a boolean value of 1.

Even when a sensor is configured for some other mode (i.e. SENSOR_MODE_PERCENT),
the boolean conversion will still be carried out.

Each sensor has six fields that are used to define its state. The field constants are
described in the following table.

Sensor Field Constant Meaning
Type The sensor type (see Table 8).
InputMode The sensor mode (see Table 9).
RawValue The raw sensor value
NormalizedValue The normalized sensor value
ScaledValue The scaled sensor value
InvalidData Invalidates the current sensor value

Table 11. Sensor Field Constants

SetSensor(port, const configuration) Function

Set the type and mode of the given sensor to the specified configuration, which must
be a special constant containing both type and mode information. The port may be
specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensor(S1, SENSOR_TOUCH);

SetSensorType(port, const type) Function

Set a sensor's type, which must be one of the predefined sensor type constants. The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorType(S1, SENSOR_TYPE_TOUCH);

SetSensorMode(port, const mode) Function

Set a sensor's mode, which should be one of the predefined sensor mode constants. A
slope parameter for boolean conversion, if desired, may be added to the mode. The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorMode(S1, SENSOR_MODE_RAW); // raw mode

SetSensorMode(S1, SENSOR_MODE_RAW + 10); // slope 10

SetSensorLight(port) Function

Configure the sensor on the specified port as a light sensor (active). The port may be
specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorLight(S1);

NXC Programmer's Guide

Page 26

SetSensorSound(port) Function

Configure the sensor on the specified port as a sound sensor (dB scaling). The port
may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorSound(S1);

SetSensorTouch(port) Function

Configure the sensor on the specified port as a touch sensor. The port may be
specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorSound(S1);

SetSensorLowspeed(port) Function

Configure the sensor on the specified port as an I2C digital sensor (9V powered). The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorLowspeed(S1);

SetInput(port, const field, value) Function

Set the specified field of the sensor on the specified port to the value provided. The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable. The
field must be a sensor field constant. Valid field constants are listed in Table 11. The
value may be any valid expression.

SetInput(S1, Type, IN_TYPE_SOUND_DB);

ClearSensor(const port) Function

Clear the value of a sensor - only affects sensors that are configured to measure a
cumulative quantity such as rotation or a pulse count. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

ClearSensor(S1);

ResetSensor(port) Function

Reset the value of a sensor. If the sensor type or mode has been modified then the
sensor should be reset in order to ensure that values read from the sensor are valid.
The port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

ResetSensor(x); // x = S1

SetCustomSensorZeroOffset(const p, value) Function

Sets the custom sensor zero offset value of a sensor. The port must be specified using
a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorZeroOffset(S1, 12);

NXC Programmer's Guide

Page 27

SetCustomSensorPercentFullScale(const p, value) Function

Sets the custom sensor percent full scale value of a sensor. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorPercentFullScale(S1, 100);

SetCustomSensorActiveStatus(const p, value) Function

Sets the custom sensor active status value of a sensor. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorActiveStatus(S1, true);

SetSensorDigiPinsDirection(const p, value) Function

Sets the digital pins direction value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsDirection(S1, 1);

SetSensorDigiPinsStatus(const p, value) Function

Sets the digital pins status value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsStatus(S1, false);

SetSensorDigiPinsOutputLevel(const p, value) Function

Sets the digital pins output level value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsOutputLevel(S1, 100);

3.2.2 Sensor Information
There are a number of values that can be inspected for each sensor. For all of these values
the sensor must be specified by a constant port value (e.g., S1, S2, S3, or S4) unless
otherwise specified.

Sensor(n) Value

Return the processed sensor reading for a sensor on port n, where n is 0, 1, 2, or 3 (or
a sensor port name constant). This is the same value that is returned by the sensor
value names (e.g. SENSOR_1). A variable whose value is the desired sensor port may
also be used.

x = Sensor(S1); // read sensor 1

SensorUS(n) Value

Return the processed sensor reading for an ultrasonic sensor on port n, where n is 0,
1, 2, or 3 (or a sensor port name constant). Since an ultrasonic sensor is an I2C digital

NXC Programmer's Guide

Page 28

sensor its value cannot be read using the standard Sensor(n) value. A variable whose
value is the desired sensor port may also be used.

x = SensorUS(S4); // read sensor 4

SensorType(n) Value

Return the configured type of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). A variable whose value is the desired sensor port may
also be used.

x = SensorType(S1);

SensorMode(n) Value

Return the current sensor mode for a sensor on port n, which must be 0, 1, 2, or 3 (or
a sensor port name constant). A variable whose value is the desired sensor port may
also be used.

x = SensorMode(S1);

SensorRaw(n) Value

Return the raw value of a sensor on port n, which must be 0, 1, 2, or 3 (or a sensor
port name constant). A variable whose value is the desired sensor port may also be
used.

x = SensorRaw(S1);

SensorNormalized(n) Value

Return the normalized value of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). A variable whose value is the desired sensor port may
also be used.

x = SensorNormalized(S1);

SensorScaled(n) Value

Return the scaled value of a sensor on port n, which must be 0, 1, 2, or 3 (or a sensor
port name constant). A variable whose value is the desired sensor port may also be
used. This is the same as the standard Sensor(n) value.

x = SensorScaled(S1);

SensorInvalid(n) Value

Return the value of the InvalidData flag of a sensor on port n, which must be 0, 1, 2,
or 3 (or a sensor port name constant). A variable whose value is the desired sensor
port may also be used.

x = SensorInvalid(S1);

NXC Programmer's Guide

Page 29

SensorBoolean(const n) Value

Return the boolean value of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). Boolean conversion is either done based on preset
cutoffs, or a slope parameter specified by calling SetSensorMode.

x = SensorBoolean(S1);

GetInput(n, const field) Value

Return the value of the specified field of a sensor on port n, which must be 0, 1, 2, or
3 (or a sensor port name constant). A variable whose value is the desired sensor port
may also be used. The field must be a sensor field constant. Valid field constants are
listed in Table 11.

x = GetInput(S1, Type);

CustomSensorZeroOffset(const p) Value

Return the custom sensor zero offset value of a sensor on port p, which must be 0, 1,
2, or 3 (or a sensor port name constant).

x = CustomSensorZeroOffset(S1);

CustomSensorPercentFullScale(const p) Value

Return the custom sensor percent full scale value of a sensor on port p, which must be
0, 1, 2, or 3 (or a sensor port name constant).

x = CustomSensorPercentFullScale(S1);

CustomSensorActiveStatus(const p) Value

Return the custom sensor active status value of a sensor on port p, which must be 0, 1,
2, or 3 (or a sensor port name constant).

x = CustomSensorActiveStatus(S1);

SensorDigiPinsDirection(const p) Value

Return the digital pins direction value of a sensor on port p, which must be 0, 1, 2, or
3 (or a sensor port name constant).

x = SensorDigiPinsDirection(S1);

SensorDigiPinsStatus(const p) Value

Return the digital pins status value of a sensor on port p, which must be 0, 1, 2, or 3
(or a sensor port name constant).

x = SensorDigiPinsStatus(S1);

NXC Programmer's Guide

Page 30

SensorDigiPinsOutputLevel(const p) Value

Return the digital pins output level value of a sensor on port p, which must be 0, 1, 2,
or 3 (or a sensor port name constant).

x = SensorDigiPinsOutputLevel(S1);

3.2.3 IOMap Offsets
Input Module Offsets Value Size
InputOffsetCustomZeroOffset(p) (((p)*20)+0) 2
InputOffsetADRaw(p) (((p)*20)+2) 2
InputOffsetSensorRaw(p) (((p)*20)+4) 2
InputOffsetSensorValue(p) (((p)*20)+6) 2
InputOffsetSensorType(p) (((p)*20)+8) 1
InputOffsetSensorMode(p) (((p)*20)+9) 1
InputOffsetSensorBoolean(p) (((p)*20)+10) 1
InputOffsetDigiPinsDir(p) (((p)*20)+11) 1
InputOffsetDigiPinsIn(p) (((p)*20)+12) 1
InputOffsetDigiPinsOut(p) (((p)*20)+13) 1
InputOffsetCustomPctFullScale(p) (((p)*20)+14) 1
InputOffsetCustomActiveStatus(p) (((p)*20)+15) 1
InputOffsetInvalidData(p) (((p)*20)+16) 1
InputOffsetSpareOne(p) (((p)*20)+17) 1
InputOffsetSpareTwo(p) (((p)*20)+18) 1
InputOffsetSpareThree(p) (((p)*20)+19) 1

Table 12. Input Module IOMap Offsets

3.3 Output Module
The NXT output module encompasses all the motor outputs.

Module Constants Value
OutputModuleName "Output.mod"
OutputModuleID 0x00020001

Table 13. Output Module Constants

Nearly all of the NXC API functions dealing with outputs take either a single output or a
set of outputs as their first argument. Depending on the function call, the output or set of
outputs may be a constant or a variable containing an appropriate output port value. The
constants OUT_A, OUT_B, and OUT_C are used to identify the three outputs. Unlike NQC,
adding individual outputs together does not combine multiple outputs. Instead, the NXC
API provides predefined combinations of outputs: OUT_AB, OUT_AC, OUT_BC, and
OUT_ABC. Manually combining outputs involves creating an array and adding two or
more of the three individual output constants to the array.

Power levels can range 0 (lowest) to 100 (highest). Negative power levels reverse the
direction of rotation (i.e., forward at a power level of -100 actually means reverse at a
power level of 100).

NXC Programmer's Guide

Page 31

The outputs each have several fields that define the current state of the output port. These
fields are defined in the table below.

Field Constant Type Access Range Meaning
UpdateFlags ubyte Read/

Write
0, 255 This field can include any combination of the flag bits

described in Table 15.

Use UF_UPDATE_MODE, UF_UPDATE_SPEED,
UF_UPDATE_TACHO_LIMIT, and
UF_UPDATE_PID_VALUES along with other fields to
commit changes to the state of outputs. Set the appropriate
flags after setting one or more of the output fields in order for
the changes to actually go into affect.

OutputMode ubyte Read/
Write

0, 255 This is a bitfield that can include any of the values listed in
Table 16.

The OUT_MODE_MOTORON bit must be set in order for
power to be applied to the motors. Add OUT_MODE_BRAKE
to enable electronic braking. Braking means that the output
voltage is not allowed to float between active PWM pulses. It
improves the accuracy of motor output but uses more battery
power.

To use motor regulation include OUT_MODE_REGULATED
in the OutputMode value. Use UF_UPDATE_MODE with
UpdateFlags to commit changes to this field.

Power sbyte Read/
Write

-100,
100

Specify the power level of the output. The absolute value of
Power is a percentage of the full power of the motor. The sign
of Power controls the rotation direction. Positive values tell the
firmware to turn the motor forward, while negative values turn
the motor backward. Use UF_UPDATE_POWER with
UpdateFlags to commit changes to this field.

ActualSpeed sbyte Read -100,
100

Return the percent of full power the firmware is applying to the
output. This may vary from the Power value when auto-
regulation code in the firmware responds to a load on the
output.

TachoCount slong Read full
range of
signed
long

Return the internal position counter value for the specified
output. The internal count is reset automatically when a new
goal is set using the TachoLimit and the
UF_UPDATE_TACHO_LIMIT flag.

Set the UF_UPDATE_RESET_COUNT flag in UpdateFlags to
reset TachoCount and cancel any TachoLimit.

The sign of TachoCount indicates the motor rotation direction.
TachoLimit ulong Read/

Write
full
range of
unsigned
long

Specify the number of degrees the motor should rotate.
Use UF_UPDATE_TACHO_LIMIT with the UpdateFlags
field to commit changes to the TachoLimit.

The value of this field is a relative distance from the current
motor position at the moment when the
UF_UPDATE_TACHO_LIMIT flag is processed.

RunState ubyte Read/
Write

0..255 Use this field to specify the running state of an output. Set the
RunState to OUT_RUNSTATE_RUNNING to enable power
to any output. Use OUT_RUNSTATE_RAMPUP to enable
automatic ramping to a new Power level greater than the
current Power level. Use OUT_RUNSTATE_RAMPDOWN to
enable automatic ramping to a new Power level less than the

NXC Programmer's Guide

Page 32

current Power level.

Both the rampup and rampdown bits must be used in
conjunction with appropriate TachoLimit and Power values. In
this case the firmware smoothly increases or decreases the
actual power to the new Power level over the total number of
degrees of rotation specified in TachoLimit.

TurnRatio sbyte Read/
Write

-100,
100

Use this field to specify a proportional turning ratio. This field
must be used in conjunction with other field values:
OutputMode must include OUT_MODE_MOTORON and
OUT_MODE_REGULATED, RegMode must be set to
OUT_REGMODE_SYNC, RunState must not be
OUT_RUNSTATE_IDLE, and Speed must be non-zero.

There are only three valid combinations of left and right
motors for use with TurnRatio: OUT_AB, OUT_BC, and
OUT_AC. In each of these three options the first motor listed
is considered to be the left motor and the second motor is the
right motor, regardless of the physical configuration of the
robot.

Negative TurnRatio values shift power toward the left motor
while positive values shift power toward the right motor. An
absolute value of 50 usually results in one motor stopping. An
absolute value of 100 usually results in two motors turning in
opposite directions at equal power.

RegMode ubyte Read/
Write

0..255 This field specifies the regulation mode to use with the
specified port(s). It is ignored if the
OUT_MODE_REGULATED bit is not set in the OutputMode
field. Unlike the OutputMode field, RegMode is not a bitfield.
Only one RegMode value can be set at a time. Valid RegMode
values are listed in Table 18.

Speed regulation means that the firmware tries to maintain a
certain speed based on the Power setting. The firmware adjusts
the PWM duty cycle if the motor is affected by a physical load.
This adjustment is reflected by the value of the ActualSpeed
property. When using speed regulation, do not set Power to its
maximum value since the firmware cannot adjust to higher
power levels in that situation.

Synchronization means the firmware tries to keep two motors
in synch regardless of physical loads. Use this mode to
maintain a straight path for a mobile robot automatically. Also
use this mode with the TurnRatio property to provide
proportional turning.

Set OUT_REGMODE_SYNC on at least two motor ports in
order for synchronization to function. Setting
OUT_REGMODE_SYNC on all three motor ports will result
in only the first two (OUT_A and OUT_B) being
synchronized.

Overload ubyte Read 0..1 This field will have a value of 1 (true) if the firmware speed
regulation cannot overcome a physical load on the motor. In
other words, the motor is turning more slowly than expected.
If the motor speed can be maintained in spite of loading then
this field value is zero (false).
In order to use this field the motor must have a non-idle
RunState, an OutputMode which includes

NXC Programmer's Guide

Page 33

OUT_MODE_MOTORON and OUT_MODE_REGULATED,
and its RegMode must be set to OUT_REGMODE_SPEED.

RegPValue ubyte Read/
Write

0..255 This field specifies the proportional term used in the internal
proportional-integral-derivative (PID) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, RegIValue, and RegDValue simultaneously.

RegIValue ubyte Read/
Write

0..255 This field specifies the integral term used in the internal
proportional-integral-derivative (PID) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, RegIValue, and RegDValue simultaneously.

RegDValue ubyte Read/
Write

0..255 This field specifies the derivative term used in the internal
proportional-integral-derivative (PID) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, RegIValue, and RegDValue simultaneously.

BlockTachoCount slong Read full
range of
signed
long

Return the block-relative position counter value for the
specified port.

Refer to the UpdateFlags description for information about
how to use block-relative position counts.

Set the UF_UPDATE_RESET_BLOCK_COUNT flag in
UpdateFlags to request that the firmware reset the
BlockTachoCount.

The sign of BlockTachoCount indicates the direction of
rotation. Positive values indicate forward rotation and negative
values indicate reverse rotation. Forward and reverse depend
on the orientation of the motor.

RotationCount slong Read full
range of
signed
long

Return the program-relative position counter value for the
specified port.

Refer to the UpdateFlags description for information about
how to use program-relative position counts.

Set the UF_UPDATE_RESET_ROTATION_COUNT flag in
UpdateFlags to request that the firmware reset the
RotationCount.

The sign of RotationCount indicates the direction of rotation.
Positive values indicate forward rotation and negative values
indicate reverse rotation. Forward and reverse depend on the
orientation of the motor.

Table 14. Output Field Constants

Valid UpdateFlags values are described in the following table.

UpdateFlags Constants Meaning
UF_UPDATE_MODE Commits changes to the OutputMode output property
UF_UPDATE_SPEED Commits changes to the Power output property
UF_UPDATE_TACHO_LIMIT Commits changes to the TachoLimit output property
UF_UPDATE_RESET_COUNT Resets all rotation counters, cancels the current goal, and resets the

rotation error-correction system
UF_UPDATE_PID_VALUES Commits changes to the PID motor regulation properties
UF_UPDATE_RESET_BLOCK_COUNT Resets the block-relative rotation counter
UF_UPDATE_RESET_ROTATION_COUNT Resets the program-relative rotation counter

Table 15. UpdateFlag Constants

NXC Programmer's Guide

Page 34

Valid OutputMode values are described in the following table.

OutputMode Constants Value Meaning
OUT_MODE_COAST 0x00 No power and no braking so motors rotate freely
OUT_MODE_MOTORON 0x01 Enables PWM power to the outputs given the Power setting
OUT_MODE_BRAKE 0x02 Uses electronic braking to outputs
OUT_MODE_REGULATED 0x04 Enables active power regulation using the RegMode value
OUT_MODE_REGMETHOD 0xf0

Table 16. OutputMode Constants

Valid RunState values are described in the following table.

RunState Constants Value Meaning
OUT_RUNSTATE_IDLE 0x00 Disable all power to motors.
OUT_RUNSTATE_RAMPUP 0x10 Enable ramping up from a current Power to a new (higher)

Power over a specified TachoLimit goal.
OUT_RUNSTATE_RUNNING 0x20 Enable power to motors at the specified Power level.
OUT_RUNSTATE_RAMPDOWN 0x40 Enable ramping down from a current Power to a new (lower)

Power over a specified TachoLimit goal.

Table 17. RunState Constants

Valid RegMode values are described in the following table.

RegMode Constants Value Meaning
OUT_REGMODE_IDLE 0x00 No regulation
OUT_REGMODE_SPEED 0x01 Regulate a motor's speed (Power)
OUT_REGMODE_SYNC 0x02 Synchronize the rotation of two motors

Table 18. RegMode Constants

3.3.1 Convenience Calls
Since control of outputs is such a common feature of programs, a number of convenience
functions are provided that make it easy to work with the outputs. It should be noted that
most of these commands do not provide any new functionality above lower level calls
described in the following section. They are merely convenient ways to make programs
more concise.

The Ex versions of the motor functions use special reset constants. They are defined in
the following table. The Var versions of the motor functions require that the outputs
argument be a variable while the non-Var versions require that the outputs argument be a
constant.

Reset Constants Value
RESET_NONE 0x00
RESET_COUNT 0x08
RESET_BLOCK_COUNT 0x20
RESET_ROTATION_COUNT 0x40
RESET_BLOCKANDTACHO 0x28
RESET_ALL 0x68

Table 19. Reset Constants

NXC Programmer's Guide

Page 35

Output Port Constants Value
OUT_A 0x00
OUT_B 0x01
OUT_C 0x02
OUT_AB 0x03
OUT_AC 0x04
OUT_BC 0x05
OUT_ABC 0x06

Table 20. Output Port Constants

Off(outputs) Function

Turn the specified outputs off (with braking). Outputs can be a constant or a variable
containing the desired output ports. Predefined output port constants are defined in
Table 20.

Off(OUT_A); // turn off output A

OffEx(outputs, const reset) Function

Turn the specified outputs off (with braking). Outputs can be a constant or a variable
containing the desired output ports. Predefined output port constants are defined in
Table 20. The reset parameter controls whether any of the three position counters are
reset. It must be a constant. Valid reset values are listed in Table 19.

OffEx(OUT_A, RESET_NONE); // turn off output A

Coast(outputs) Function

Turn off the specified outputs, making them coast to a stop. Outputs can be a constant
or a variable containing the desired output ports. Predefined output port constants are
defined in Table 20.

Coast(OUT_A); // coast output A

CoastEx(outputs, const reset) Function

Turn off the specified outputs, making them coast to a stop. Outputs can be a constant
or a variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The reset parameter controls whether any of the three position
counters are reset. It must be a constant. Valid reset values are listed in Table 19.

CoastEx(OUT_A, RESET_NONE); // coast output A

Float(outputs) Function

Make outputs float. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20. Float is an
alias for Coast.

Float(OUT_A); // float output A

NXC Programmer's Guide

Page 36

OnFwd(outputs, pwr) Function

Set outputs to forward direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20.

OnFwd(OUT_A, 75);

OnFwdEx(outputs, pwr, const reset) Function

Set outputs to forward direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The reset parameter controls whether any of the three position
counters are reset. It must be a constant. Valid reset values are listed in Table 19.

OnFwdEx(OUT_A, 75, RESET_NONE);

OnRev(outputs, pwr) Function

Set outputs to reverse direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20.

OnRev(OUT_A, 75);

OnRevEx(outputs, pwr, const reset) Function

Set outputs to reverse direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The reset parameter controls whether any of the three position
counters are reset. It must be a constant. Valid reset values are listed in Table 19.

OnRevEx(OUT_A, 75, RESET_NONE);

OnFwdReg(outputs, pwr, regmode) Function

Run the specified outputs forward using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18.

OnFwdReg(OUT_A, 75, OUT_REGMODE_SPEED); // regulate speed

OnFwdRegEx(outputs, pwr, regmode, const reset) Function

Run the specified outputs forward using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18. The
reset parameter controls whether any of the three position counters are reset. It must
be a constant. Valid reset values are listed in Table 19.

OnFwdRegEx(OUT_A, 75, OUT_REGMODE_SPEED, RESET_NONE);

NXC Programmer's Guide

Page 37

OnRevReg(outputs, pwr, regmode) Function

Run the specified outputs in reverse using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18.

OnRevReg(OUT_A, 75, OUT_REGMODE_SPEED); // regulate speed

OnRevRegEx(outputs, pwr, regmode, const reset) Function

Run the specified outputs in reverse using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18. The
reset parameter controls whether any of the three position counters are reset. It must
be a constant. Valid reset values are listed in Table 19.

OnRevRegEx(OUT_A, 75, OUT_REGMODE_SPEED, RESET_NONE);

OnFwdSync(outputs, pwr, turnpct) Function

Run the specified outputs forward with regulated synchronization using the specified
turn ratio. Outputs can be a constant or a variable containing the desired output ports.
Predefined output port constants are defined in Table 20.

OnFwdSync(OUT_AB, 75, -100); // spin right

OnFwdSyncEx(outputs, pwr, turnpct, const reset) Function

Run the specified outputs forward with regulated synchronization using the specified
turn ratio. Outputs can be a constant or a variable containing the desired output ports.
Predefined output port constants are defined in Table 20. The reset parameter controls
whether any of the three position counters are reset. It must be a constant. Valid reset
values are listed in Table 19.

OnFwdSyncEx(OUT_AB, 75, 0, RESET_NONE);

OnRevSync(outputs, pwr, turnpct) Function

Run the specified outputs in reverse with regulated synchronization using the
specified turn ratio. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20.

OnRevSync(OUT_AB, 75, -100); // spin left

OnRevSyncEx(outputs, pwr, turnpct, const reset) Function

Run the specified outputs in reverse with regulated synchronization using the
specified turn ratio. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20. The reset
parameter controls whether any of the three position counters are reset. It must be a
constant. Valid reset values are listed in Table 19.

OnRevSyncEx(OUT_AB, 75, -100, RESET_NONE); // spin left

NXC Programmer's Guide

Page 38

RotateMotor(outputs, pwr, angle) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20.

RotateMotor(OUT_A, 75, 45); // forward 45 degrees

RotateMotor(OUT_A, -75, 45); // reverse 45 degrees

RotateMotorPID(outputs, pwr, angle, p, i, d) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Also specify the proportional, integral, and
derivative factors used by the firmware's PID motor control algorithm.

RotateMotorPID(OUT_A, 75, 45, 20, 40, 100);

RotateMotorEx(outputs, pwr, angle, turnpct, sync, stop) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. If a non-zero turn percent is specified then sync
must be set to true or no turning will occur. Specify whether the motor(s) should
brake at the end of the rotation using the stop parameter.

RotateMotorEx(OUT_AB, 75, 360, 50, true, true);

RotateMotorExPID(outputs, pwr, angle, turnpct, sync, stop, p, i, d)Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. If a non-zero turn percent is specified then sync
must be set to true or no turning will occur. Specify whether the motor(s) should
brake at the end of the rotation using the stop parameter. Also specify the
proportional, integral, and derivative factors used by the firmware's PID motor
control algorithm.

RotateMotorExPID(OUT_AB, 75, 360, 50, true, true, 30, 50,
90);

ResetTachoCount(outputs) Function

Reset the tachometer count and tachometer limit goal for the specified outputs.
Outputs can be a constant or a variable containing the desired output ports. Predefined
output port constants are defined in Table 20.

ResetTachoCount(OUT_AB);

NXC Programmer's Guide

Page 39

ResetBlockTachoCount(outputs) Function

Reset the block-relative position counter for the specified outputs. Outputs can be a
constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20.

ResetBlockTachoCount(OUT_AB);

ResetRotationCount(outputs) Function

Reset the program-relative position counter for the specified outputs. Outputs can be
a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20.

ResetRotationCount(OUT_AB);

ResetAllTachoCounts(outputs) Function

Reset all three position counters and reset the current tachometer limit goal for the
specified outputs. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20.

ResetAllTachoCounts(OUT_AB);

3.3.2 Primitive Calls

SetOutput(outputs, const field1, val1, …, const fieldN, valN) Function

Set the specified field of the outputs to the value provided. Outputs can be a constant
or a variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The field must be a valid output field constant. This function
takes a variable number of field/value pairs.

SetOutput(OUT_AB, TachoLimit, 720); // set tacho limit

The output field constants are described in Table 14.

GetOutput(output, const field) Value

Get the value of the specified field for the specified output. Output can be OUT_A,
OUT_B, OUT_C, or a variable containing one of these values. The field must be a valid
output field constant.

x = GetOutput(OUT_A, TachoLimit);

The output field constants are described in Table 14.

MotorMode(output) Value

Get the mode of the specified output. Output can be OUT_A, OUT_B, OUT_C, or a
variable containing one of these values.

x = MotorMode(OUT_A);

NXC Programmer's Guide

Page 40

MotorPower(output) Value

Get the power level of the specified output. Output can be OUT_A, OUT_B, OUT_C, or
a variable containing one of these values.

x = MotorPower(OUT_A);

MotorActualSpeed(output) Value

Get the actual speed value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

x = MotorActualSpeed(OUT_A);

MotorTachoCount(output) Value

Get the tachometer count value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

x = MotorTachoCount(OUT_A);

MotorTachoLimit(output) Value

Get the tachometer limit value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

x = MotorTachoLimit(OUT_A);

MotorRunState(output) Value

Get the RunState value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

x = MotorRunState(OUT_A);

MotorTurnRatio(output) Value

Get the turn ratio value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

x = MotorTurnRatio(OUT_A);

MotorRegulation(output) Value

Get the regulation value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

x = MotorRegulation(OUT_A);

MotorOverload(output) Value

Get the overload value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

x = MotorOverload(OUT_A);

NXC Programmer's Guide

Page 41

MotorRegPValue(output) Value

Get the proportional PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

x = MotorRegPValue(OUT_A);

MotorRegIValue(output) Value

Get the integral PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

x = MotorRegIValue(OUT_A);

MotorRegDValue(output) Value

Get the derivative PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

x = MotorRegDValue(OUT_A);

MotorBlockTachoCount(output) Value

Get the block-relative position counter value of the specified output. Output can be
OUT_A, OUT_B, OUT_C, or a variable containing one of these values.

x = MotorBlockTachoCount(OUT_A);

MotorRotationCount(output) Value

Get the program-relative position counter value of the specified output. Output can be
OUT_A, OUT_B, OUT_C, or a variable containing one of these values.

x = MotorRotationCount(OUT_A);

MotorPwnFreq() Value

Get the current motor pulse width modulation frequency.

x = MotorPwnFreq();

SetMotorPwnFreq(val) Function

Set the current motor pulse width modulation frequency.

SetMotorPwnFreq(x);

3.3.3 IOMap Offsets
Output Module Offsets Value Size
OutputOffsetTachoCount(p) (((p)*32)+0) 4
OutputOffsetBlockTachoCount(p) (((p)*32)+4) 4
OutputOffsetRotationCount(p) (((p)*32)+8) 4
OutputOffsetTachoLimit(p) (((p)*32)+12) 4
OutputOffsetMotorRPM(p) (((p)*32)+16) 2

NXC Programmer's Guide

Page 42

OutputOffsetFlags(p) (((p)*32)+18) 1
OutputOffsetMode(p) (((p)*32)+19) 1
OutputOffsetSpeed(p) (((p)*32)+20) 1
OutputOffsetActualSpeed(p) (((p)*32)+21) 1
OutputOffsetRegPParameter(p) (((p)*32)+22) 1
OutputOffsetRegIParameter(p) (((p)*32)+23) 1
OutputOffsetRegDParameter(p) (((p)*32)+24) 1
OutputOffsetRunState(p) (((p)*32)+25) 1
OutputOffsetRegMode(p) (((p)*32)+26) 1
OutputOffsetOverloaded(p) (((p)*32)+27) 1
OutputOffsetSyncTurnParameter(p) (((p)*32)+28) 1
OutputOffsetPwnFreq 96 1

Table 21. Output Module IOMap Offsets

3.4 IO Map Addresses
The NXT firmware provides a mechanism for reading and writing input (sensor) and
output (motor) field values using low-level constants known as IO Map Addresses
(IOMA). Valid IOMA constants are listed in the following table.

IOMA Constant Parameter Meaning
InputIOType(p) S1..S4 Input Type value
InputIOInputMode(p) S1..S4 Input InputMode value
InputIORawValue(p) S1..S4 Input RawValue value
InputIONormalizedValue(p) S1..S4 Input NormalizedValue value
InputIOScaledValue(p) S1..S4 Input ScaledValue value
InputIOInvalidData(p) S1..S4 Input InvalidData value
OutputIOUpdateFlags(p) OUT_A..OUT_C Output UpdateFlags value
OutputIOOutputMode(p) OUT_A..OUT_C Output OutputMode value
OutputIOPower(p) OUT_A..OUT_C Output Power value
OutputIOActualSpeed(p) OUT_A..OUT_C Output ActualSpeed value
OutputIOTachoCount(p) OUT_A..OUT_C Output TachoCount value
OutputIOTachoLimit(p) OUT_A..OUT_C Output TachoLimit value
OutputIORunState(p) OUT_A..OUT_C Output RunState value
OutputIOTurnRatio(p) OUT_A..OUT_C Output TurnRatio value
OutputIORegMode(p) OUT_A..OUT_C Output RegMode value
OutputIOOverload(p) OUT_A..OUT_C Output Overload value
OutputIORegPValue(p) OUT_A..OUT_C Output RegPValue value
OutputIORegIValue(p) OUT_A..OUT_C Output RegIValue value
OutputIORegDValue(p) OUT_A..OUT_C Output RegDValue value
OutputIOBlockTachoCount(p) OUT_A..OUT_C Output BlockTachoCount value
OutputIORotationCount(p) OUT_A..OUT_C Output RotationCount value

Table 22. IOMA Constants

IOMA(const n) Value

Get the specified IO Map Address value. Valid IO Map Address constants are listed
in Table 22.

x = IOMA(InputIORawValue(S3));

NXC Programmer's Guide

Page 43

SetIOMA(const n, val) Function

Set the specified IO Map Address to the value provided. Valid IO Map Address
constants are listed in Table 22. The value must be a specified via a constant, a
constant expression, or a variable.

SetIOMA(OutputIOPower(OUT_A), x);

3.5 Sound Module
The NXT sound module encompasses all sound output features. The NXT provides
support for playing basic tones as well as two different types of files.

Module Constants Value
SoundModuleName "Sound.mod"
SoundModuleID 0x00080001

Table 23. Sound Module Constants

Sound files (.rso) are like .wav files. They contain thousands of sound samples that
digitally represent an analog waveform. With sounds files the NXT can speak or play
music or make just about any sound imaginable.

Melody files are like MIDI files. They contain multiple tones with each tone being
defined by a frequency and duration pair. When played on the NXT a melody file sounds
like a pure sine-wave tone generator playing back a series of notes. While not as fancy as
sound files, melody files are usually much smaller than sound files.

When a sound or a file is played on the NXT, execution of the program does not wait for
the previous playback to complete. To play multiple tones or files sequentially it is
necessary to wait for the previous tone or file playback to complete first. This can be
done via the Wait API function or by using the sound state value within a while loop.

The NXC API defines frequency and duration constants which may be used in calls to
PlayTone or PlayToneEx. Frequency constants start with TONE_A3 (the 'A' pitch in
octave 3) and go to TONE_B7 (the 'B' pitch in octave 7). Duration constants start with
MS_1 (1 millisecond) and go up to MIN_1 (60000 milliseconds) with several constants in
between. See NBCCommon.h for the complete list.

3.5.1 High-level functions

PlayTone(frequency, duration) Function

Play a single tone of the specified frequency and duration. The frequency is in Hz.
The duration is in 1000ths of a second. All parameters may be any valid expression.

PlayTone(440, 500); // Play 'A' for one half second

NXC Programmer's Guide

Page 44

PlayToneEx(frequency, duration, volume, bLoop) Function

Play a single tone of the specified frequency, duration, and volume. The frequency is
in Hz. The duration is in 1000ths of a second. Volume should be a number from 0
(silent) to 4 (loudest). All parameters may be any valid expression.

PlayToneEx(440, 500, 2, false);

PlayFile(filename) Function

Play the specified sound file (.rso) or a melody file (.rmd). The filename may be any
valid string expression.

PlayFile("startup.rso");

PlayFileEx(filename, volume, bLoop) Function

Play the specified sound file (.rso) or a melody file (.rmd). The filename may be any
valid string expression. Volume should be a number from 0 (silent) to 4 (loudest).
bLoop is a boolean value indicating whether to repeatedly play the file.

PlayFileEx("startup.rso", 3, true);

3.5.2 Low-level functions
Valid sound flags constants are listed in the following table.

Sound Flags Constants Read/Write Meaning
SOUND_FLAGS_IDLE Read Sound is idle
SOUND_FLAGS_UPDATE Write Make changes take effect
SOUND_FLAGS_RUNNING Read Processing a tone or file

Table 24. Sound Flags Constants

Valid sound state constants are listed in the following table.

Sound State Constants Read/Write Meaning
SOUND_STATE_IDLE Read Idle, ready for start sound
SOUND_STATE_FILE Read Processing file of sound/melody data
SOUND_STATE_TONE Read Processing play tone request
SOUND_STATE_STOP Write Stop sound immediately and close hardware

Table 25. Sound State Constants

Valid sound mode constants are listed in the following table.

Sound Mode Constants Read/Write Meaning
SOUND_MODE_ONCE Read Only play file once
SOUND_MODE_LOOP Read Play file until writing

SOUND_STATE_STOP into State.
SOUND_MODE_TONE Read Play tone specified in Frequency for

Duration milliseconds.

Table 26. Sound Mode Constants

NXC Programmer's Guide

Page 45

Miscellaneous sound constants are listed in the following table.

Misc. Sound Constants Value Meaning
FREQUENCY_MIN 220 Minimum frequency in Hz.
FREQUENCY_MAX 14080 Maximum frequency in Hz.
SAMPLERATE_MIN 2000 Minimum sample rate supported by NXT
SAMPLERATE_DEFAULT 8000 Default sample rate
SAMPLERATE_MAX 16000 Maximum sample rate supported by NXT

Table 27. Miscellaneous Sound Constants

SoundFlags() Value

Return the current sound flags. Valid sound flags values are listed in Table 24.

x = SoundFlags();

SetSoundFlags(n) Function

Set the current sound flags. Valid sound flags values are listed in Table 24.

SetSoundFlags(SOUND_FLAGS_UPDATE);

SoundState() Value

Return the current sound state. Valid sound state values are listed in Table 25.

x = SoundState();

SetSoundState(n) Function

Set the current sound state. Valid sound state values are listed in Table 25.

SetSoundState(SOUND_STATE_STOP);

SoundMode() Value

Return the current sound mode. Valid sound mode values are listed in Table 26.

x = SoundMode();

SetSoundMode(n) Function

Set the current sound mode. Valid sound mode values are listed in Table 26.

SetSoundMode(SOUND_MODE_ONCE);

SoundFrequency() Value

Return the current sound frequency.

x = SoundFrequency();

SetSoundFrequency(n) Function

Set the current sound frequency.

SetSoundFrequency(440);

NXC Programmer's Guide

Page 46

SoundDuration() Value

Return the current sound duration.

x = SoundDuration();

SetSoundDuration(n) Function

Set the current sound duration.

SetSoundDuration(500);

SoundSampleRate() Value

Return the current sound sample rate.

x = SoundSampleRate();

SetSoundSampleRate(n) Function

Set the current sound sample rate.

SetSoundSampleRate(4000);

SoundVolume() Value

Return the current sound volume.

x = SoundVolume();

SetSoundVolume(n) Function

Set the current sound volume.

SetSoundVolume(3);

StopSound() Function

Stop playback of the current tone or file.

StopSound();

3.5.3 IOMap Offsets
Sound Module Offsets Value Size
SoundOffsetFreq 0 2
SoundOffsetDuration 2 2
SoundOffsetSampleRate 4 2
SoundOffsetSoundFilename 6 20
SoundOffsetFlags 26 1
SoundOffsetState 27 1
SoundOffsetMode 28 1
SoundOffsetVolume 29 1

Table 28. Sound Module IOMap Offsets

NXC Programmer's Guide

Page 47

3.6 IOCtrl Module
The NXT ioctrl module encompasses low-level communication between the two
processors that control the NXT. The NXC API exposes two functions that are part of
this module.

Module Constants Value
IOCtrlModuleName "IOCtrl.mod"
IOCtrlModuleID 0x00060001

Table 29. IOCtrl Module Constants

PowerDown() Function

Turn off the NXT immediately.

PowerDown();

RebootInFirmwareMode() Function

Reboot the NXT in SAMBA or firmware download mode. This function is not likely
to be used in a normal NXC program.

RebootInFirmwareMode();

3.6.1 IOMap Offsets
IOCtrl Module Offsets Value Size
IOCtrlOffsetPowerOn 0 2

Table 30. IOCtrl Module IOMap Offsets

3.7 Display module
The NXT display module encompasses support for drawing to the NXT LCD. The NXT
supports drawing points, lines, rectangles, and circles on the LCD. It supports drawing
graphic icon files on the screen as well as text and numbers.

Module Constants Value
DisplayModuleName "Display.mod"
DisplayModuleID 0x000A0001

Table 31. Display Module Constants

The LCD screen has its origin (0, 0) at the bottom left-hand corner of the screen with the
positive Y-axis extending upward and the positive X-axis extending toward the right. The
NXC API provides constants for use in the NumOut and TextOut functions which make
it possible to specify LCD line numbers between 1 and 8 with line 1 being at the top of
the screen and line 8 being at the bottom of the screen. These constants (LCD_LINE1,
LCD_LINE2, LCD_LINE3, LCD_LINE4, LCD_LINE5, LCD_LINE6, LCD_LINE7,
LCD_LINE8) should be used as the Y coordinate in NumOut and TextOut calls. Values of
Y other than these constants will be adjusted so that text and numbers are on one of 8
fixed line positions.

NXC Programmer's Guide

Page 48

3.7.1 High-level functions

NumOut(x, y, value, clear = false) Function

Draw a numeric value on the screen at the specified x and y location. Optionally clear
the screen first depending on the boolean value of the optional "clear" argument. If
this argument is not specified it defaults to false.

NumOut(0, LCD_LINE1, x);

TextOut(x, y, msg, clear = false) Function

Draw a text value on the screen at the specified x and y location. Optionally clear the
screen first depending on the boolean value of the optional "clear" argument. If this
argument is not specified it defaults to false.

TextOut(0, LCD_LINE3, "Hello World!");

GraphicOut(x, y, filename, clear = false) Function

Draw the specified graphic icon file on the screen at the specified x and y location.
Optionally clear the screen first depending on the boolean value of the optional
"clear" argument. If this argument is not specified it defaults to false. If the file
cannot be found then nothing will be drawn and no errors will be reported.

GraphicOut(40, 40, "image.ric");

GraphicOutEx(x, y, filename, vars, clear = false) Function

Draw the specified graphic icon file on the screen at the specified x and y location.
Use the values contained in the vars array to transform the drawing commands
contained within the specified icon file. Optionally clear the screen first depending on
the boolean value of the optional "clear" argument. If this argument is not specified it
defaults to false. If the file cannot be found then nothing will be drawn and no errors
will be reported.

GraphicOutEx(40, 40, "image.ric", variables);

CircleOut(x, y, radius, clear = false) Function

Draw a circle on the screen with its center at the specified x and y location, using the
specified radius. Optionally clear the screen first depending on the boolean value of
the optional "clear" argument. If this argument is not specified it defaults to false.

CircleOut(40, 40, 10);

LineOut(x1, y1, x2, y2, clear = false) Function

Draw a line on the screen from x1, y1 to x2, y2. Optionally clear the screen first
depending on the boolean value of the optional "clear" argument. If this argument is
not specified it defaults to false.

LineOut(40, 40, 10, 10);

NXC Programmer's Guide

Page 49

PointOut(x, y, clear = false) Function

Draw a point on the screen at x, y. Optionally clear the screen first depending on the
boolean value of the optional "clear" argument. If this argument is not specified it
defaults to false.

PointOut(40, 40);

RectOut(x, y, width, height, clear = false) Function

Draw a rectangle on the screen at x, y with the specified width and height. Optionally
clear the screen first depending on the boolean value of the optional "clear" argument.
If this argument is not specified it defaults to false.

RectOut(40, 40, 30, 10);

ResetScreen() Function

Restore the standard NXT running program screen.

ResetScreen();

ClearScreen() Function

Clear the NXT LCD to a blank screen.

ClearScreen();

3.7.2 Low-level functions
Valid display flag values are listed in the following table.

Display Flags Constant Read/Write Meaning
DISPLAY_ON Write Display is on
DISPLAY_REFRESH Write Enable refresh
DISPLAY_POPUP Write Use popup display memory
DISPLAY_REFRESH_DISABLED Read Refresh is disabled
DISPLAY_BUSY Read Refresh is in progress

Table 32. Display Flags Constants

DisplayFlags() Value

Return the current display flags. Valid flag values are listed in Table 32.

x = DisplayFlags();

SetDisplayFlags(n) Function

Set the current display flags. Valid flag values are listed in Table 32.

SetDisplayFlags(x);

DisplayEraseMask() Value

Return the current display erase mask.

NXC Programmer's Guide

Page 50

x = DisplayEraseMask();

SetDisplayEraseMask(n) Function

Set the current display erase mask.

SetDisplayEraseMask(x);

DisplayUpdateMask() Value

Return the current display update mask.

x = DisplayUpdateMask();

SetDisplayUpdateMask(n) Function

Set the current display update mask.

SetDisplayUpdateMask(x);

DisplayDisplay() Value

Return the current display memory address.

x = DisplayDisplay();

SetDisplayDisplay(n) Function

Set the current display memory address.

SetDisplayDisplay(x);

DisplayTextLinesCenterFlags() Value

Return the current display text lines center flags.

x = DisplayTextLinesCenterFlags();

SetDisplayTextLinesCenterFlags(n) Function

Set the current display text lines center flags.

SetDisplayTextLinesCenterFlags(x);

GetDisplayNormal(x, line, count, data) Function

Read "count" bytes from the normal display memory into the data array. Start reading
from the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINE8 for the "line" parameter.

GetDisplayNormal(0, TEXTLINE_1, 8, ScreenMem);

SetDisplayNormal(x, line, count, data) Function

Write "count" bytes to the normal display memory from the data array. Start writing
at the specified x, line coordinate. Each byte of data read from screen memory is a

NXC Programmer's Guide

Page 51

vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINE8 for the "line" parameter.

SetDisplayNormal(0, TEXTLINE_1, 8, ScreenMem);

GetDisplayPopup(x, line, count, data) Function

Read "count" bytes from the popup display memory into the data array. Start reading
from the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINE8 for the "line" parameter.

GetDisplayPopup(0, TEXTLINE_1, 8, PopupMem);

SetDisplayPopup(x, line, count, data) Function

Write "count" bytes to the popup display memory from the data array. Start writing at
the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINE8 for the "line" parameter.

SetDisplayPopup(0, TEXTLINE_1, 8, PopupMem);

3.7.3 IOMap Offsets
Display Module Offsets Value Size
DisplayOffsetPFunc 0 4
DisplayOffsetEraseMask 4 4
DisplayOffsetUpdateMask 8 4
DisplayOffsetPFont 12 4
DisplayOffsetPTextLines(p) (((p)*4)+16) 4*8
DisplayOffsetPStatusText 48 4
DisplayOffsetPStatusIcons 52 4
DisplayOffsetPScreens(p) (((p)*4)+56) 4*3
DisplayOffsetPBitmaps(p) (((p)*4)+68) 4*4
DisplayOffsetPMenuText 84 4
DisplayOffsetPMenuIcons(p) (((p)*4)+88) 4*3
DisplayOffsetPStepIcons 100 4
DisplayOffsetDisplay 104 4
DisplayOffsetStatusIcons(p) ((p)+108) 1*4
DisplayOffsetStepIcons(p) ((p)+112) 1*5
DisplayOffsetFlags 117 1
DisplayOffsetTextLinesCenterFlags 118 1
DisplayOffsetNormal(l,w) (((l)*100)+(w)+119) 800
DisplayOffsetPopup(l,w) (((l)*100)+(w)+919) 800

Table 33. Display Module IOMap Offsets

3.8 Loader Module
The NXT loader module encompasses support for the NXT file system. The NXT
supports creating files, opening existing files, reading, writing, renaming, and deleting
files.

NXC Programmer's Guide

Page 52

Module Constants Value
LoaderModuleName "Loader.mod"
LoaderModuleID 0x00090001

Table 34. Loader Module Constants

Files in the NXT file system must adhere to the 15.3 naming convention for a maximum
filename length of 19 characters. While multiple files can be opened simultaneously, a
maximum of 4 files can be open for writing at any given time.

When accessing files on the NXT, errors can occur. The NXC API defines several
constants that define possible result codes. They are listed in the following table.

Loader Result Codes Value
LDR_SUCCESS 0x0000
LDR_INPROGRESS 0x0001
LDR_REQPIN 0x0002
LDR_NOMOREHANDLES 0x8100
LDR_NOSPACE 0x8200
LDR_NOMOREFILES 0x8300
LDR_EOFEXPECTED 0x8400
LDR_ENDOFFILE 0x8500
LDR_NOTLINEARFILE 0x8600
LDR_FILENOTFOUND 0x8700
LDR_HANDLEALREADYCLOSED 0x8800
LDR_NOLINEARSPACE 0x8900
LDR_UNDEFINEDERROR 0x8A00
LDR_FILEISBUSY 0x8B00
LDR_NOWRITEBUFFERS 0x8C00
LDR_APPENDNOTPOSSIBLE 0x8D00
LDR_FILEISFULL 0x8E00
LDR_FILEEXISTS 0x8F00
LDR_MODULENOTFOUND 0x9000
LDR_OUTOFBOUNDARY 0x9100
LDR_ILLEGALFILENAME 0x9200
LDR_ILLEGALHANDLE 0x9300
LDR_BTBUSY 0x9400
LDR_BTCONNECTFAIL 0x9500
LDR_BTTIMEOUT 0x9600
LDR_FILETX_TIMEOUT 0x9700
LDR_FILETX_DSTEXISTS 0x9800
LDR_FILETX_SRCMISSING 0x9900
LDR_FILETX_STREAMERROR 0x9A00
LDR_FILETX_CLOSEERROR 0x9B00

Table 35. Loader Result Codes

FreeMemory() Value

Get the number of bytes of flash memory that are available for use.

x = FreeMemory();

NXC Programmer's Guide

Page 53

CreateFile(filename, size, out handle) Value

Create a new file with the specified filename and size and open it for writing. The file
handle is returned in the last parameter, which must be a variable. The loader result
code is returned as the value of the function call. The filename and size parameters
must be constants, constant expressions, or variables. A file created with a size of
zero bytes cannot be written to since the NXC file writing functions do not grow the
file if its capacity is exceeded during a write attempt.

result = CreateFile("data.txt", 1024, handle);

OpenFileAppend(filename, out size, out handle) Value

Open an existing file with the specified filename for writing. The file size is returned
in the second parameter, which must be a variable. The file handle is returned in the
last parameter, which must be a variable. The loader result code is returned as the
value of the function call. The filename parameter must be a constant or a variable.

result = OpenFileAppend("data.txt", fsize, handle);

OpenFileRead(filename, out size, out handle) Value

Open an existing file with the specified filename for reading. The file size is returned
in the second parameter, which must be a variable. The file handle is returned in the
last parameter, which must be a variable. The loader result code is returned as the
value of the function call. The filename parameter must be a constant or a variable.

result = OpenFileRead("data.txt", fsize, handle);

CloseFile(handle) Value

Close the file associated with the specified file handle. The loader result code is
returned as the value of the function call. The handle parameter must be a constant or
a variable.

result = CloseFile(handle);

ResolveHandle(filename, out handle, out bWriteable) Value

Resolve a file handle from the specified filename. The file handle is returned in the
second parameter, which must be a variable. A boolean value indicating whether the
handle can be used to write to the file or not is returned in the last parameter, which
must be a variable. The loader result code is returned as the value of the function call.
The filename parameter must be a constant or a variable.

result = ResolveHandle("data.txt", handle, bCanWrite);

NXC Programmer's Guide

Page 54

RenameFile(oldfilename, newfilename) Value

Rename a file from the old filename to the new filename. The loader result code is
returned as the value of the function call. The filename parameters must be constants
or variables.

result = RenameFile("data.txt", "mydata.txt");

DeleteFile(filename) Value

Delete the specified file. The loader result code is returned as the value of the
function call. The filename parameter must be a constant or a variable.

result = DeleteFile("data.txt");

Read(handle, out value) Value

Read a numeric value from the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a variable. The type of the value parameter
determines the number of bytes of data read.

result = Read(handle, value);

ReadLn(handle, out value) Value

Read a numeric value from the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a variable. The type of the value parameter
determines the number of bytes of data read. The ReadLn function reads two
additional bytes from the file which it assumes are a carriage return and line feed pair.

result = ReadLn(handle, value);

ReadBytes(handle, in/out length, out buf) Value

Read the specified number of bytes from the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The length parameter must be a variable. The buf
parameter must be an array or a string variable. The actual number of bytes read is
returned in the length parameter.

result = ReadBytes(handle, len, buffer);

Write(handle, value) Value

Write a numeric value to the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a constant, a constant expression, or a
variable. The type of the value parameter determines the number of bytes of data
written.

result = Write(handle, value);

NXC Programmer's Guide

Page 55

WriteLn(handle, value) Value

Write a numeric value to the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a constant, a constant expression, or a
variable. The type of the value parameter determines the number of bytes of data
written. The WriteLn function also writes a carriage return and a line feed to the file
following the numeric data.

result = WriteLn(handle, value);

WriteString(handle, str, out count) Value

Write the string to the file associated with the specified handle. The loader result code
is returned as the value of the function call. The handle parameter must be a variable.
The count parameter must be a variable. The str parameter must be a string variable
or string constant. The actual number of bytes written is returned in the count
parameter.

result = WriteString(handle, "testing", count);

WriteLnString(handle, str, out count) Value

Write the string to the file associated with the specified handle. The loader result code
is returned as the value of the function call. The handle parameter must be a variable.
The count parameter must be a variable. The str parameter must be a string variable
or string constant. This function also writes a carriage return and a line feed to the file
following the string data. The total number of bytes written is returned in the count
parameter.

result = WriteLnString(handle, "testing", count);

WriteBytes(handle, data, out count) Value

Write the contents of the data array to the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The count parameter must be a variable. The data
parameter must be an array. The actual number of bytes written is returned in the
count parameter.

result = WriteBytes(handle, buffer, count);

WriteBytesEx(handle, in/out length, buf) Value

Write the specified number of bytes to the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The length parameter must be a variable. The buf
parameter must be an array or a string variable or string constant. The actual number
of bytes written is returned in the length parameter.

result = WriteBytesEx(handle, len, buffer);

NXC Programmer's Guide

Page 56

3.8.1 IOMap Offsets
Loader Module Offsets Value Size
LoaderOffsetPFunc 0 4
LoaderOffsetFreeUserFlash 4 4

Table 36. Loader Module IOMap Offsets

3.9 Command Module
The NXT command module encompasses support for the execution of user programs via
the NXT virtual machine. It also implements the direct command protocol support that
enables the NXT to respond to USB or Bluetooth requests from other devices such as a
PC or another NXT brick.

Module Constants Value
CommandModuleName "Command.mod"
CommandModuleID 0x00010001

Table 37. Command Module Constants

3.9.1 IOMap Offsets
Command Module Offsets Value Size
CommandOffsetFormatString 0 16
CommandOffsetPRCHandler 16 4
CommandOffsetTick 20 4
CommandOffsetOffsetDS 24 2
CommandOffsetOffsetDVA 26 2
CommandOffsetProgStatus 28 1
CommandOffsetAwake 29 1
CommandOffsetActivateFlag 30 1
CommandOffsetDeactivateFlag 31 1
CommandOffsetFileName 32 20
CommandOffsetMemoryPool 52 32k

Table 38. Command Module IOMap Offsets

3.10 Button Module
The NXT button module encompasses support for the 4 buttons on the NXT brick.

Module Constants Value
ButtonModuleName "Button.mod"
ButtonModuleID 0x00040001

Table 39. Button Module Constants

NXC Programmer's Guide

Page 57

3.10.1 High-level functions
Valid button constant values are listed in the following table.

Button Constants Value
BTN1, BTNEXIT 0
BTN2, BTNRIGHT 1
BTN3, BTNLEFT 2
BTN4, BTNCENTER 3
NO_OF_BTNS 4

Table 40. Button Constants

ButtonCount(btn, reset) Value

Return the number of times the specified button has been pressed since the last time
the button press count was reset. Optionally clear the count after reading it. Valid
values for the btn argument are listed in Table 40.

value = ButtonCount(BTN1, true);

ButtonPressed(btn, reset) Value

Return whether the specified button is pressed. Optionally clear the press count.
Valid values for the btn argument are listed in Table 40.

value = ButtonPressed(BTN1, true);

ReadButtonEx(btn, reset, out pressed, out count) Function

Read the specified button. Set the pressed and count parameters with the current state
of the button. Optionally reset the press count after reading it. Valid values for the
btn argument are listed in Table 40.

ReadButtonEx(BTN1, true, pressed, count);

3.10.2 Low-level functions
Valid button state values are listed in the following table.

Button State Constants Value
BTNSTATE_PRESSED_EV 0x01
BTNSTATE_SHORT_RELEASED_EV 0x02
BTNSTATE_LONG_PRESSED_EV 0x04
BTNSTATE_LONG_RELEASED_EV 0x08
BTNSTATE_PRESSED_STATE 0x80

Table 41. Button State Constants

ButtonPressCount(btn) Value

Return the press count of the specified button. Valid values for the btn argument are
listed in Table 40.

value = ButtonPressCount(BTN1);

NXC Programmer's Guide

Page 58

SetButtonPressCount(btn, value) Function

Set the press count of the specified button. Valid values for the btn argument are
listed in Table 40.

SetButtonPressCount(BTN1, value);

ButtonLongPressCount(btn) Value

Return the long press count of the specified button. Valid values for the btn argument
are listed in Table 40.

value = ButtonLongPressCount(BTN1);

SetButtonLongPressCount(btn, value) Function

Set the long press count of the specified button. Valid values for the btn argument are
listed in Table 40.

SetButtonLongPressCount(BTN1, value);

ButtonShortReleaseCount(btn) Value

Return the short release count of the specified button. Valid values for the btn
argument are listed in Table 40.

value = ButtonShortReleaseCount(BTN1);

SetButtonShortReleaseCount(btn, value) Function

Set the short release count of the specified button. Valid values for the btn argument
are listed in Table 40.

SetButtonShortReleaseCount(BTN1, value);

ButtonLongReleaseCount(btn) Value

Return the long release count of the specified button. Valid values for the btn
argument are listed in Table 40.

value = ButtonLongReleaseCount(BTN1);

SetButtonLongReleaseCount(btn, value) Function

Set the long release count of the specified button. Valid values for the btn argument
are listed in Table 40.

SetButtonLongReleaseCount(BTN1, value);

ButtonReleaseCount(btn) Value

Return the release count of the specified button. Valid values for the btn argument
are listed in Table 40.

value = ButtonReleaseCount(BTN1);

NXC Programmer's Guide

Page 59

SetButtonReleaseCount(btn, value) Function

Set the release count of the specified button. Valid values for the btn argument are
listed in Table 40.

SetButtonReleaseCount(BTN1, value);

ButtonState(btn) Value

Return the state of the specified button. Valid values for the btn argument are listed
in Table 40. Button state values are listed in Table 41.

value = ButtonState(BTN1);

SetButtonState(btn, value) Function

Set the state of the specified button. Valid values for the btn argument are listed in
Table 40. Button state values are listed in Table 41.

SetButtonState(BTN1, BTNSTATE_PRESSED_EV);

3.10.3 IOMap Offsets
Button Module Offsets Value Size
ButtonOffsetPressedCnt(b) (((b)*8)+0) 1
ButtonOffsetLongPressCnt(b) (((b)*8)+1) 1
ButtonOffsetShortRelCnt(b) (((b)*8)+2) 1
ButtonOffsetLongRelCnt(b) (((b)*8)+3) 1
ButtonOffsetRelCnt(b) (((b)*8)+4) 1
ButtonOffsetState(b) ((b)+32) 1*4

Table 42. Button Module IOMap Offsets

3.11 UI Module
The NXT UI module encompasses support for various aspects of the user interface for the
NXT brick.

Module Constants Value
UIModuleName "Ui.mod"
UIModuleID 0x000C0001

Table 43. UI Module Constants

Valid command flag values are listed in the following table.

NXC Programmer's Guide

Page 60

UI Command Flags Constants Value
UI_FLAGS_UPDATE 0x01
UI_FLAGS_DISABLE_LEFT_RIGHT_ENTER 0x02
UI_FLAGS_DISABLE_EXIT 0x04
UI_FLAGS_REDRAW_STATUS 0x08
UI_FLAGS_RESET_SLEEP_TIMER 0x10
UI_FLAGS_EXECUTE_LMS_FILE 0x20
UI_FLAGS_BUSY 0x40
UI_FLAGS_ENABLE_STATUS_UPDATE 0x80

Table 44. UI Command Flags Constants

Valid UI state values are listed in the following table.

UI State Constants Value
UI_STATE_INIT_DISPLAY 0
UI_STATE_INIT_LOW_BATTERY 1
UI_STATE_INIT_INTRO 2
UI_STATE_INIT_WAIT 3
UI_STATE_INIT_MENU 4
UI_STATE_NEXT_MENU 5
UI_STATE_DRAW_MENU 6
UI_STATE_TEST_BUTTONS 7
UI_STATE_LEFT_PRESSED 8
UI_STATE_RIGHT_PRESSED 9
UI_STATE_ENTER_PRESSED 10
UI_STATE_EXIT_PRESSED 11
UI_STATE_CONNECT_REQUEST 12
UI_STATE_EXECUTE_FILE 13
UI_STATE_EXECUTING_FILE 14
UI_STATE_LOW_BATTERY 15
UI_STATE_BT_ERROR 16

Table 45. UI State Constants

Valid UI button values are listed in the following table.

UI Button Constants Value
UI_BUTTON_NONE 1
UI_BUTTON_LEFT 2
UI_BUTTON_ENTER 3
UI_BUTTON_RIGHT 4
UI_BUTTON_EXIT 5

Table 46. UI Button Constants

Valid UI Bluetooth state values are listed in the following table.

UI Bluetooth State Constants Value
UI_BT_STATE_VISIBLE 0x01
UI_BT_STATE_CONNECTED 0x02
UI_BT_STATE_OFF 0x04
UI_BT_ERROR_ATTENTION 0x08
UI_BT_CONNECT_REQUEST 0x40
UI_BT_PIN_REQUEST 0x80

Table 47. UI Bluetooth State Constants

NXC Programmer's Guide

Page 61

Volume() Value

Return the user interface volume level. Valid values are from 0 to 4.

x = Volume();

SetVolume(value) Function

Set the user interface volume level. Valid values are from 0 to 4.

SetVolume(3);

BatteryLevel() Value

Return the battery level in millivolts.

x = BatteryLevel();

BluetoothState() Value

Return the Bluetooth state. Valid Bluetooth state values are listed in Table 47.

x = BluetoothState();

SetBluetoothState(value) Function

Set the Bluetooth state. Valid Bluetooth state values are listed in Table 47.

SetBluetoothState(UI_BT_STATE_OFF);

CommandFlags() Value

Return the command flags. Valid command flag values are listed in Table 44.

x = CommandFlags();

SetCommandFlags(value) Function

Set the command flags. Valid command flag values are listed in Table 44.

SetCommandFlags(UI_FLAGS_REDRAW_STATUS);

UIState() Value

Return the user interface state. Valid user interface state values are listed in Table 45.

x = UIState();

SetUIState(value) Function

Set the user interface state. Valid user interface state values are listed in Table 45.

SetUIState(UI_STATE_LOW_BATTERY);

NXC Programmer's Guide

Page 62

UIButton() Value

Return user interface button information. Valid user interface button values are listed
in Table 46.

x = UIButton();

SetUIButton(value) Function

Set user interface button information. Valid user interface button values are listed in
Table 46.

SetUIButton(UI_BUTTON_ENTER);

VMRunState() Value

Return VM run state information.

x = VMRunState();

SetVMRunState(value) Function

Set VM run state information.

SetVMRunState(0); // stopped

BatteryState() Value

Return battery state information (0..4).

x = BatteryState();

SetBatteryState(value) Function

Set battery state information.

SetBatteryState(4);

RechargeableBattery() Value

Return whether the NXT has a rechargeable battery installed or not.

x = RechargeableBattery();

ForceOff(n) Function

Force the NXT to turn off if the specified value is greater than zero.

ForceOff(true);

UsbState() Value

Return USB state information (0=disconnected, 1=connected, 2=working).

x = UsbState();

NXC Programmer's Guide

Page 63

SetUsbState(value) Function

Set USB state information (0=disconnected, 1=connected, 2=working).

SetUsbState(2);

OnBrickProgramPointer() Value

Return the current OBP (on-brick program) step;

x = OnBrickProgramPointer();

SetOnBrickProgramPointer(value) Function

Set the current OBP (on-brick program) step.

SetOnBrickProgramPointer(2);

3.11.1 IOMap Offsets
UI Module Offsets Value Size
UIOffsetPMenu 0 4
UIOffsetBatteryVoltage 4 2
UIOffsetLMSfilename 6 20
UIOffsetFlags 26 1
UIOffsetState 27 1
UIOffsetButton 28 1
UIOffsetRunState 29 1
UIOffsetBatteryState 30 1
UIOffsetBluetoothState 31 1
UIOffsetUsbState 32 1
UIOffsetSleepTimeout 33 1
UIOffsetSleepTimer 34 1
UIOffsetRechargeable 35 1
UIOffsetVolume 36 1
UIOffsetError 37 1
UIOffsetOBPPointer 38 1
UIOffsetForceOff 39 1

Table 48. UI Module IOMap Offsets

3.12 LowSpeed Module
The NXT low speed module encompasses support for digital I2C sensor communication.

Module Constants Value
LowSpeedModuleName "Low Speed.mod"
LowSpeedModuleID 0x000B0001

Table 49. LowSpeed Module Constants

Use the lowspeed (aka I2C) communication methods to access devices that use the I2C
protocol on the NXT brick's four input ports.

NXC Programmer's Guide

Page 64

You must set the input port's Type property to SENSOR_TYPE_LOWSPEED or
SENSOR_TYPE_LOWSPEED_9V on a given port before using an I2C device on that port. Use
SENSOR_TYPE_LOWSPEED_9V if your device requires 9V power from the NXT brick.
Remember that you also need to set the input port's InvalidData property to true after
setting a new Type, and then wait in a loop for the NXT firmware to set InvalidData
back to false. This process ensures that the firmware has time to properly initialize the
port, including the 9V power lines, if applicable. Some digital devices might need
additional time to initialize after power up.

The SetSensorLowspeed API function sets the specified port to
SENSOR_TYPE_LOWSPEED_9V and calls ResetSensor to perform the InvalidData reset loop
described above.

When communicating with I2C devices, the NXT firmware uses a master/slave setup in
which the NXT brick is always the master device. This means that the firmware is
responsible for controlling the write and read operations. The NXT firmware maintains
write and read buffers for each port, and the three main Lowspeed (I2C) methods
described below enable you to access these buffers.

A call to LowspeedWrite starts an asynchronous transaction between the NXT brick and
a digital I2C device. The program continues to run while the firmware manages sending
bytes from the write buffer and reading the response bytes from the device. Because the
NXT is the master device, you must also specify the number of bytes to expect from the
device in response to each write operation. You can exchange up to 16 bytes in each
direction per transaction.

After you start a write transaction with LowspeedWrite, use LowspeedStatus in a loop to
check the status of the port. If LowspeedStatus returns a status code of 0 and a count of
bytes available in the read buffer, the system is ready for you to use LowspeedRead to
copy the data from the read buffer into the buffer you provide.

Note that any of these calls might return various status codes at any time. A status code of
0 means the port is idle and the last transaction (if any) did not result in any errors.
Negative status codes and the positive status code 32 indicate errors. There are a few
possible errors per call.

Valid low speed return values are listed in the following table.

Low Speed Return Constants Value Meaning
NO_ERR 0 The operation succeeded.
STAT_COMM_PENDING 32 The specified port is busy

performing a communication
transaction.

ERR_INVALID_SIZE -19 The specified buffer or byte
count exceeded the 16 byte limit.

ERR_COMM_CHAN_NOT_READY -32 The specified port is busy or
improperly configured.

ERR_COMM_CHAN_INVALID -33 The specified port is invalid. It
must be between 0 and 3.

ERR_COMM_BUS_ERR -35 The last transaction failed,
possibly due to a device failure.

Table 50. Lowspeed (I2C) Return Value Constants

NXC Programmer's Guide

Page 65

3.12.1 High-level functions

LowspeedWrite(port, returnlen, buffer) Value

This method starts a transaction to write the bytes contained in the array buffer to the
I2C device on the specified port. It also tells the I2C device the number of bytes that
should be included in the response. The maximum number of bytes that can be
written or read is 16. The port may be specified using a constant (e.g., S1, S2, S3, or
S4) or a variable. Constants should be used where possible to avoid blocking access
to I2C devices on other ports by code running on other threads. Lowspeed return
values are listed in Table 50.

x = LowspeedWrite(S1, 1, inbuffer);

LowspeedStatus(port, out bytesready) Value

This method checks the status of the I2C communication on the specified port. If the
last operation on this port was a successful LowspeedWrite call that requested
response data from the device then bytesready will be set to the number of bytes in
the internal read buffer. The port may be specified using a constant (e.g., S1, S2, S3,
or S4) or a variable. Constants should be used where possible to avoid blocking
access to I2C devices on other ports by code running on other threads. Lowspeed
return values are listed in Table 50. If the return value is 0 then the last operation did
not cause any errors. Avoid calls to LowspeedRead or LowspeedWrite while
LowspeedStatus returns STAT_COMM_PENDING.

x = LowspeedStatus(S1, nRead);

LowspeedRead(port, buflen, out buffer) Value

Read the specified number of bytes from the I2C device on the specified port and
store the bytes read in the array buffer provided. The maximum number of bytes that
can be written or read is 16. The port may be specified using a constant (e.g., S1, S2,
S3, or S4) or a variable. Constants should be used where possible to avoid blocking
access to I2C devices on other ports by code running on other threads. Lowspeed
return values are listed in Table 50. If the return value is negative then the output
buffer will be empty.

x = LowspeedRead(S1, 1, outbuffer);

I2CWrite(port, returnlen, buffer) Value

This is an alias for LowspeedWrite.

x = I2CWrite(S1, 1, inbuffer);

I2CStatus(port, out bytesready) Value

This is an alias for LowspeedStatus.

x = I2CStatus(S1, nRead);

NXC Programmer's Guide

Page 66

I2CRead(port, buflen, out buffer) Value

This is an alias for LowspeedRead.

x = I2CRead(S1, 1, outbuffer);

I2CBytes(port, inbuf, in/out count, out outbuf) Value

This method writes the bytes contained in the input buffer (inbuf) to the I2C device
on the specified port, checks for the specified number of bytes to be ready for
reading, and then tries to read the specified number (count) of bytes from the I2C
device into the output buffer (outbuf). The port may be specified using a constant
(e.g., S1, S2, S3, or S4) or a variable. Returns true or false indicating whether the
I2C read process succeeded or failed.

This is a higher-level wrapper around the three main I2C functions. It also maintains
a "last good read" buffer and returns values from that buffer if the I2C
communication transaction fails.

x = I2CBytes(S4, writebuf, cnt, readbuf);

3.12.2 Low-level functions
Valid low speed state values are listed in the following table.

Low Speed State Constants Value
COM_CHANNEL_NONE_ACTIVE 0x00
COM_CHANNEL_ONE_ACTIVE 0x01
COM_CHANNEL_TWO_ACTIVE 0x02
COM_CHANNEL_THREE_ACTIVE 0x04
COM_CHANNEL_NONE_ACTIVE 0x08

Table 51. Low Speed State Constants

Valid low speed channel state values are listed in the following table.

Low Speed Channel State Constants Value
LOWSPEED_IDLE 0
LOWSPEED_INIT 1
LOWSPEED_LOAD_BUFFER 2
LOWSPEED_COMMUNICATING 3
LOWSPEED_ERROR 4
LOWSPEED_DONE 5

Table 52. Low Speed Channel State Constants

Valid low speed mode values are listed in the following table.

Low Speed Mode Constants Value
LOWSPEED_TRANSMITTING 1
LOWSPEED_RECEIVING 2
LOWSPEED_DATA_RECEIVED 3

Table 53. Low Speed Mode Constants

NXC Programmer's Guide

Page 67

Valid low speed error type values are listed in the following table.

Low Speed Error Type Constants Value
LOWSPEED_NO_ERROR 0
LOWSPEED_CH_NOT_READY 1
LOWSPEED_TX_ERROR 2
LOWSPEED_RX_ERROR 3

Table 54. Low Speed Error Type Constants

GetLSInputBuffer(port, offset, count, out data) Function

This method reads data from the lowspeed input buffer associated with the specified
port.

GetLSInputBuffer(S1, 0, 8, buffer);

SetLSInputBuffer(port, offset, count, data) Function

This method writes data to the lowspeed input buffer associated with the specified
port.

SetLSInputBuffer(S1, 0, 8, data);

GetLSOutputBuffer(port, offset, count, out data) Function

This method reads data from the lowspeed output buffer associated with the specified
port.

GetLSOutputBuffer(S1, 0, 8, outbuffer);

SetLSOutputBuffer(port, offset, count, data) Function

This method writes data to the lowspeed output buffer associated with the specified
port.

SetLSOutputBuffer(S1, 0, 8, data);

LSInputBufferInPtr(port) Value

This method returns the value of the input pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

x = LSInputBufferInPtr(S1);

SetLSInputBufferInPtr(port) Function

This method sets the value of the input pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSInputBufferInPtr(S1, x);

NXC Programmer's Guide

Page 68

LSInputBufferOutPtr(port) Value

This method returns the value of the output pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

x = LSInputBufferOutPtr(S1);

SetLSInputBufferOutPtr(port) Function

This method sets the value of the output pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSInputBufferOutPtr(S1, x);

LSInputBufferBytesToRx(port) Value

This method returns the bytes to receive for the lowspeed input buffer associated with
the specified port. The port must be a constant (S1..S4).

x = LSInputBufferBytesToRx(S1);

SetLSInputBufferBytesToRx(port) Function

This method sets the bytes to receive for the lowspeed input buffer associated with
the specified port. The port must be a constant (S1..S4).

SetLSInputBufferBytesToRx(S1, x);

LSOutputBufferInPtr(port) Value

This method returns the value of the input pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

x = LSOutputBufferInPtr(S1);

SetLSOutputBufferInPtr(port) Function

This method sets the value of the input pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSOutputBufferInPtr(S1, x);

LSOutputBufferOutPtr(port) Value

This method returns the value of the output pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

x = LSOutputBufferOutPtr(S1);

SetLSOutputBufferOutPtr(port) Function

This method sets the value of the output pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSOutputBufferOutPtr(S1, x);

NXC Programmer's Guide

Page 69

LSOutputBufferBytesToRx(port) Value

This method returns the bytes to receive for the lowspeed output buffer associated
with the specified port. The port must be a constant (S1..S4).

x = LSOutputBufferBytesToRx(S1);

SetLSOutputBufferBytesToRx(port) Function

This method sets the bytes to receive for the lowspeed output buffer associated with
the specified port. The port must be a constant (S1..S4).

SetLSOutputBufferBytesToRx(S1, x);

LSMode(port) Value

This method returns the mode of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

x = LSMode(S1);

SetLSMode(port) Function

This method sets the mode of the lowspeed communication over the specified port.
The port must be a constant (S1..S4).

SetLSMode(S1, LOWSPEED_TRANSMITTING);

LSChannelState(port) Value

This method returns the channel state of the lowspeed communication over the
specified port. The port must be a constant (S1..S4).

x = LSChannelState(S1);

SetLSChannelState(port) Function

This method sets the channel state of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

SetLSChannelState(S1, LOWSPEED_IDLE);

LSErrorType(port) Value

This method returns the error type of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

x = LSErrorType(S1);

SetLSErrorType(port) Function

This method sets the error type of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

SetLSErrorType(S1, LOWSPEED_CH_NOT_READY);

NXC Programmer's Guide

Page 70

LSState() Value

This method returns the state of the lowspeed module.

x = LSState();

SetLSState(n) Function

This method sets the state of the lowspeed module.

SetLSState(COM_CHANNEL_THREE_ACTIVE);

LSSpeed() Value

This method returns the speed of the lowspeed module.

x = LSSpeed();

SetLSSpeed(n) Function

This method sets the speed of the lowspeed module.

SetLSSpeed(100);

3.12.3 IOMap Offsets
LowSpeed Module Offsets Value Size
LowSpeedOffsetInBufBuf(p) (((p)*19)+0) 16
LowSpeedOffsetInBufInPtr(p) (((p)*19)+16) 1
LowSpeedOffsetInBufOutPtr(p) (((p)*19)+17) 1
LowSpeedOffsetInBufBytesToRx(p) (((p)*19)+18) 58
LowSpeedOffsetOutBufBuf(p) (((p)*19)+76) 16
LowSpeedOffsetOutBufInPtr(p) (((p)*19)+92) 1
LowSpeedOffsetOutBufOutPtr(p) (((p)*19)+93) 1
LowSpeedOffsetOutBufBytesToRx(p) (((p)*19)+94) 58
LowSpeedOffsetMode(p) ((p)+152) 4
LowSpeedOffsetChannelState(p) ((p)+156) 4
LowSpeedOffsetErrorType(p) ((p)+160) 4
LowSpeedOffsetState 164 1
LowSpeedOffsetSpeed 165 1
LowSpeedOffsetSpare 166 1

Table 55. LowSpeed Module IOMap Offsets

3.13 Comm Module
The NXT comm module encompasses support for all forms of Bluetooth, USB, and
HiSpeed communication.

Module Constants Value
CommModuleName "Comm.mod"
CommModuleID 0x00050001

Table 56. Comm Module Constants

NXC Programmer's Guide

Page 71

You can use the Bluetooth communication methods to send information to other devices
connected to the NXT brick. The NXT firmware also implements a message queuing or
mailbox system which you can access using these methods.

Communication via Bluetooth uses a master/slave connection system. One device must
be designated as the master device before you run a program using Bluetooth. If the NXT
is the master device then you can configure up to three slave devices using connection 1,
2, and 3 on the NXT brick. If your NXT is a slave device then connection 0 on the brick
must be reserved for the master device.

Programs running on the master NXT brick can send packets of data to any connected
slave devices using the BluetoothWrite method. Slave devices write response packets to
the message queuing system where they wait for the master device to poll for the
response.

Using the direct command protocol, a master device can send messages to slave NXT
bricks in the form of text strings addressed to a particular mailbox. Each mailbox on the
slave NXT brick is a circular message queue holding up to five messages. Each message
can be up to 58 bytes long.

To send messages from a master NXT brick to a slave brick, use BluetoothWrite on the
master brick to send a MessageWrite direct command packet to the slave. Then, you can
use ReceiveMessage on the slave brick to read the message. The slave NXT brick must
be running a program when an incoming message packet is received. Otherwise, the slave
NXT brick ignores the message and the message is dropped.

3.13.1 High-level functions

SendRemoteBool(connection, queue, bvalue) Value

This method sends a boolean value to the device on the specified connection. The
message containing the boolean value will be written to the specified queue on the
remote brick.

x = SendRemoteBool(1, queue, false);

SendRemoteNumber(connection, queue, value) Value

This method sends a numeric value to the device on the specified connection. The
message containing the numeric value will be written to the specified queue on the
remote brick.

x = SendRemoteNumber(1, queue, 123);

SendRemoteString(connection, queue, strval) Value

This method sends a string value to the device on the specified connection. The
message containing the string value will be written to the specified queue on the
remote brick.

x = SendRemoteString(1, queue, "hello world");

NXC Programmer's Guide

Page 72

SendResponseBool(queue, bvalue) Value

This method sends a boolean value as a response to a received message. The message
containing the boolean value will be written to the specified queue (+10) on the slave
brick so that it can be retrieved by the master brick via automatic polling.

x = SendResponseBool(queue, false);

SendResponseNumber(queue, value) Value

This method sends a numeric value as a response to a received message. The
message containing the numeric value will be written to the specified queue (+10) on
the slave brick so that it can be retrieved by the master brick via automatic polling.

x = SendResponseNumber(queue, 123);

SendResponseString(queue, strval) Value

This method sends a string value as a response to a received message. The message
containing the string value will be written to the specified queue (+10) on the slave
brick so that it can be retrieved by the master brick via automatic polling.

x = SendResponseString(queue, "hello world");

ReceiveRemoteBool(queue, remove, out bvalue) Value

This method is used on a master brick to receive a boolean value from a slave device
communicating via a specific mailbox or message queue. Optionally remove the last
read message from the message queue depending on the value of the boolean remove
parameter.

x = ReceiveRemoteBool(queue, true, bvalue);

ReceiveRemoteNumber(queue, remove, out value) Value

This method is used on a master brick to receive a numeric value from a slave device
communicating via a specific mailbox or message queue. Optionally remove the last
read message from the message queue depending on the value of the boolean remove
parameter.

x = ReceiveRemoteBool(queue, true, value);

ReceiveRemoteString(queue, remove, out strval) Value

This method is used on a master brick to receive a string value from a slave device
communicating via a specific mailbox or message queue. Optionally remove the last
read message from the message queue depending on the value of the boolean remove
parameter.

x = ReceiveRemoteString(queue, true, strval);

NXC Programmer's Guide

Page 73

ReceiveRemoteMessageEx(queue, remove, out strval, out val, out bval)Value

This method is used on a master brick to receive a string, boolean, or numeric value
from a slave device communicating via a specific mailbox or message queue.
Optionally remove the last read message from the message queue depending on the
value of the boolean remove parameter.

x = ReceiveRemoteMessageEx(queue, true, strval, val, bval);

SendMessage(queue, msg) Value

This method writes the message buffer contents to the specified mailbox or message
queue. The maximum message length is 58 bytes.

x = SendMessage(mbox, data);

ReceiveMessage(queue, remove, out buffer) Value

This method retrieves a message from the specified queue and writes it to the buffer
provided. Optionally removes the last read message from the message queue
depending on the value of the boolean remove parameter.

x = RecieveMessage(mbox, true, buffer);

BluetoothStatus(connection) Value

This method returns the status of the specified Bluetooth connection. Avoid calling
BluetoothWrite or any other API function that writes data over a Bluetooth
connection while BluetoothStatus returns STAT_COMM_PENDING.

x = BluetoothStatus(1);

BluetoothWrite(connection, buffer) Value

This method tells the NXT firmware to write the data in the buffer to the device on
the specified Bluetooth connection. Use BluetoothStatus to determine when this
write request is completed.

x = BluetoothWrite(1, data);

RemoteMessageRead(connection, queue) Value

This method sends a MessageRead direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteMessageRead(1, 5);

RemoteMessageWrite(connection, queue, msg) Value

This method sends a MessageWrite direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteMessageWrite(1, 5, "test");

NXC Programmer's Guide

Page 74

RemoteStartProgram(connection, filename) Value

This method sends a StartProgram direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteStartProgram(1, "myprog.rxe");

RemoteStopProgram(connection) Value

This method sends a StopProgram direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteStopProgram(1);

RemotePlaySoundFile(connection, filename, bLoop) Value

This method sends a PlaySoundFile direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemotePlaySoundFile(1, "click.rso", false);

RemotePlayTone(connection, frequency, duration) Value

This method sends a PlayTone direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemotePlayTone(1, 440, 1000);

RemoteStopSound(connection) Value

This method sends a StopSound direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteStopSound(1);

RemoteKeepAlive(connection) Value

This method sends a KeepAlive direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteKeepAlive(1);

RemoteResetScaledValue(connection, port) Value

This method sends a ResetScaledValue direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteResetScaledValue(1, S1);

RemoteResetMotorPosition(connection, port, bRelative) Value

This method sends a ResetMotorPosition direct command to the device on the
specified connection. Use BluetoothStatus to determine when this write request is
completed.

x = RemoteResetMotorPosition(1, OUT_A, true);

NXC Programmer's Guide

Page 75

RemoteSetInputMode(connection, port, type, mode) Value

This method sends a SetInputMode direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteSetInputMode(1, S1,
 IN_TYPE_LOWSPEED, IN_MODE_RAW);

RemoteSetOutputState(connection, port, speed, mode, regmode,
turnpct, runstate, tacholimit) Value

This method sends a SetOutputState direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

x = RemoteSetOutputState(1, OUT_A, 75, OUT_MODE_MOTORON,
 OUT_REGMODE_IDLE, 0, OUT_RUNSTATE_RUNNING, 0);

3.13.2 Low-level functions
Valid miscellaneous constant values are listed in the following table.

Comm Miscellaneous Constants Value
SIZE_OF_USBBUF 64
USB_PROTOCOL_OVERHEAD 2
SIZE_OF_USBDATA 62
SIZE_OF_HSBUF 128
SIZE_OF_BTBUF 128
BT_CMD_BYTE 1
SIZE_OF_BT_DEVICE_TABLE 30
SIZE_OF_BT_CONNECT_TABLE 4
SIZE_OF_BT_NAME 16
SIZE_OF_BRICK_NAME 8
SIZE_OF_CLASS_OF_DEVICE 4
SIZE_OF_BDADDR 7
MAX_BT_MSG_SIZE 60000
BT_DEFAULT_INQUIRY_MAX 0
BT_DEFAULT_INQUIRY_TIMEOUT_LO 15
LR_SUCCESS 0x50
LR_COULD_NOT_SAVE 0x51
LR_STORE_IS_FULL 0x52
LR_ENTRY_REMOVED 0x53
LR_UNKNOWN_ADDR 0x54
USB_CMD_READY 0x01
BT_CMD_READY 0x02
HS_CMD_READY 0x04

Table 57. Comm Miscellaneous Constants

NXC Programmer's Guide

Page 76

Valid BtState values are listed in the following table.

Comm BtState Constants Value
BT_ARM_OFF 0
BT_ARM_CMD_MODE 1
BT_ARM_DATA_MODE 2

Table 58. Comm BtState Constants

Valid BtStateStatus values are listed in the following table.

Comm BtStateStatus Constants Value
BT_BRICK_VISIBILITY 0x01
BT_BRICK_PORT_OPEN 0x02
BT_CONNECTION_0_ENABLE 0x10
BT_CONNECTION_1_ENABLE 0x20
BT_CONNECTION_2_ENABLE 0x40
BT_CONNECTION_3_ENABLE

Table 59. Comm BtStateStatus Constants

Valid BtHwStatus values are listed in the following table.

Comm BtHwStatus Constants Value
BT_ENABLE 0x00
BT_DISABLE 0x01

Table 60. Comm BtHwStatus Constants

Valid HsFlags values are listed in the following table.

Comm HsFlags Constants Value
HS_UPDATE 1

Table 61. Comm HsFlags Constants

Valid HsState values are listed in the following table.

Comm HsState Constants Value
HS_INITIALISE 1
HS_INIT_RECEIVER 2
HS_SEND_DATA 3
HS_DISABLE 4

Table 62. Comm HsState Constants

Valid DeviceStatus values are listed in the following table.

Comm DeviceStatus Constants Value
BT_DEVICE_EMPTY 0x00
BT_DEVICE_UNKNOWN 0x01
BT_DEVICE_KNOWN 0x02
BT_DEVICE_NAME 0x40
BT_DEVICE_AWAY 0x80

Table 63. Comm DeviceStatus Constants

NXC Programmer's Guide

Page 77

Valid module interface values are listed in the following table.

Comm Module Interface Constants Value
INTF_SENDFILE 0
INTF_SEARCH 1
INTF_STOPSEARCH 2
INTF_CONNECT 3
INTF_DISCONNECT 4
INTF_DISCONNECTALL 5
INTF_REMOVEDEVICE 6
INTF_VISIBILITY 7
INTF_SETCMDMODE 8
INTF_OPENSTREAM 9
INTF_SENDDATA 10
INTF_FACTORYRESET 11
INTF_BTON 12
INTF_BTOFF 13
INTF_SETBTNAME 14
INTF_EXTREAD 15
INTF_PINREQ 16
INTF_CONNECTREQ 17

Table 64. Comm Module Interface Constants

3.13.2.1 USB functions

GetUSBInputBuffer(offset, count, out data) Function

This method reads count bytes of data from the USB input buffer at the specified
offset and writes it to the buffer provided.

GetUSBInputBuffer(0, 10, buffer);

SetUSBInputBuffer(offset, count, data) Function

This method writes count bytes of data to the USB input buffer at the specified offset.

SetUSBInputBuffer(0, 10, buffer);

SetUSBInputBufferInPtr(n) Function

This method sets the input pointer of the USB input buffer to the specified value.

SetUSBInputBufferInPtr(0);

USBInputBufferInPtr() Value

This method returns the value of the input pointer of the USB input buffer.

byte x = USBInputBufferInPtr();

SetUSBInputBufferOutPtr(n) Function

This method sets the output pointer of the USB input buffer to the specified value.

SetUSBInputBufferOutPtr(0);

NXC Programmer's Guide

Page 78

USBInputBufferOutPtr() Value

This method returns the value of the output pointer of the USB input buffer.

byte x = USBInputBufferOutPtr();

GetUSBOutputBuffer(offset, count, out data) Function

This method reads count bytes of data from the USB output buffer at the specified
offset and writes it to the buffer provided.

GetUSBOutputBuffer(0, 10, buffer);

SetUSBOutputBuffer(offset, count, data) Function

This method writes count bytes of data to the USB output buffer at the specified
offset.

SetUSBOutputBuffer(0, 10, buffer);

SetUSBOutputBufferInPtr(n) Function

This method sets the input pointer of the USB output buffer to the specified value.

SetUSBOutputBufferInPtr(0);

USBOutputBufferInPtr() Value

This method returns the value of the input pointer of the USB output buffer.

byte x = USBOutputBufferInPtr();

SetUSBOutputBufferOutPtr(n) Function

This method sets the output pointer of the USB output buffer to the specified value.

SetUSBOutputBufferOutPtr(0);

USBOutputBufferOutPtr() Value

This method returns the value of the output pointer of the USB output buffer.

byte x = USBOutputBufferOutPtr();

GetUSBPollBuffer(offset, count, out data) Function

This method reads count bytes of data from the USB poll buffer and writes it to the
buffer provided.

GetUSBPollBuffer(0, 10, buffer);

SetUSBPollBuffer(offset, count, data) Function

This method writes count bytes of data to the USB poll buffer at the specified offset.

SetUSBPollBuffer(0, 10, buffer);

NXC Programmer's Guide

Page 79

SetUSBPollBufferInPtr(n) Function

This method sets the input pointer of the USB poll buffer to the specified value.

SetUSBPollBufferInPtr(0);

USBPollBufferInPtr() Value

This method returns the value of the input pointer of the USB poll buffer.

byte x = USBPollBufferInPtr();

SetUSBPollBufferOutPtr(n) Function

This method sets the output pointer of the USB poll buffer to the specified value.

SetUSBPollBufferOutPtr(0);

USBPollBufferOutPtr() Value

This method returns the value of the output pointer of the USB poll buffer.

byte x = USBPollBufferOutPtr();

SetUSBState(n) Function

This method sets the USB state to the specified value.

SetUSBState(0);

USBState() Value

This method returns the USB state.

byte x = USBPollBufferOutPtr();

3.13.2.2 High Speed port functions

GetHSInputBuffer(offset, count, out data) Function

This method reads count bytes of data from the High Speed input buffer and writes it
to the buffer provided.

GetHSInputBuffer(0, 10, buffer);

SetHSInputBuffer(offset, count, data) Function

This method writes count bytes of data to the High Speed input buffer at the specified
offset.

SetHSInputBuffer(0, 10, buffer);

NXC Programmer's Guide

Page 80

SetHSInputBufferInPtr(n) Function

This method sets the input pointer of the High Speed input buffer to the specified
value.

SetHSInputBufferInPtr(0);

HSInputBufferInPtr() Value

This method returns the value of the input pointer of the High Speed input buffer.

byte x = HSInputBufferInPtr();

SetHSInputBufferOutPtr(n) Function

This method sets the output pointer of the High Speed input buffer to the specified
value.

SetHSInputBufferOutPtr(0);

HSInputBufferOutPtr() Value

This method returns the value of the output pointer of the High Speed input buffer.

byte x = HSInputBufferOutPtr();

GetHSOutputBuffer(offset, count, out data) Function

This method reads count bytes of data from the High Speed output buffer and writes
it to the buffer provided.

GetHSOutputBuffer(0, 10, buffer);

SetHSOutputBuffer(offset, count, data) Function

This method writes count bytes of data to the High Speed output buffer at the
specified offset.

SetHSOutputBuffer(0, 10, buffer);

SetHSOutputBufferInPtr(n) Function

This method sets the Output pointer of the High Speed output buffer to the specified
value.

SetHSOutputBufferInPtr(0);

HSOutputBufferInPtr() Value

This method returns the value of the Output pointer of the High Speed output buffer.

byte x = HSOutputBufferInPtr();

NXC Programmer's Guide

Page 81

SetHSOutputBufferOutPtr(n) Function

This method sets the output pointer of the High Speed output buffer to the specified
value.

SetHSOutputBufferOutPtr(0);

HSOutputBufferOutPtr() Value

This method returns the value of the output pointer of the High Speed output buffer.

byte x = HSOutputBufferOutPtr();

SetHSFlags(n) Function

This method sets the High Speed flags to the specified value.

SetHSFlags(0);

HSFlags() Value

This method returns the value of the High Speed flags.

byte x = HSFlags();

SetHSSpeed(n) Function

This method sets the High Speed speed to the specified value.

SetHSSpeed(1);

HSSpeed() Value

This method returns the value of the High Speed speed.

byte x = HSSpeed();

SetHSState(n) Function

This method sets the High Speed state to the specified value.

SetHSState(1);

HSState() Value

This method returns the value of the High Speed state.

byte x = HSState();

3.13.2.3 Bluetooth functions

GetBTInputBuffer(offset, count, out data) Function

This method reads count bytes of data from the Bluetooth input buffer and writes it to
the buffer provided.

GetBTInputBuffer(0, 10, buffer);

NXC Programmer's Guide

Page 82

SetBTInputBuffer(offset, count, data) Function

This method writes count bytes of data to the Bluetooth input buffer at the specified
offset.

SetBTInputBuffer(0, 10, buffer);

SetBTInputBufferInPtr(n) Function

This method sets the input pointer of the Bluetooth input buffer to the specified value.

SetBTInputBufferInPtr(0);

BTInputBufferInPtr() Value

This method returns the value of the input pointer of the Bluetooth input buffer.

byte x = BTInputBufferInPtr();

SetBTInputBufferOutPtr(n) Function

This method sets the output pointer of the Bluetooth input buffer to the specified
value.

SetBTInputBufferOutPtr(0);

BTInputBufferOutPtr() Value

This method returns the value of the output pointer of the Bluetooth input buffer.

byte x = BTInputBufferOutPtr();

GetBTOutputBuffer(offset, count, out data) Function

This method reads count bytes of data from the Bluetooth output buffer and writes it
to the buffer provided.

GetBTOutputBuffer(0, 10, buffer);

SetBTOutputBuffer(offset, count, data) Function

This method writes count bytes of data to the Bluetooth output buffer at the specified
offset.

SetBTOutputBuffer(0, 10, buffer);

SetBTOutputBufferInPtr(n) Function

This method sets the input pointer of the Bluetooth output buffer to the specified
value.

SetBTOutputBufferInPtr(0);

NXC Programmer's Guide

Page 83

BTOutputBufferInPtr() Value

This method returns the value of the input pointer of the Bluetooth output buffer.

byte x = BTOutputBufferInPtr();

SetBTOutputBufferOutPtr(n) Function

This method sets the output pointer of the Bluetooth output buffer to the specified
value.

SetBTOutputBufferOutPtr(0);

BTOutputBufferOutPtr() Value

This method returns the value of the output pointer of the Bluetooth output buffer.

byte x = BTOutputBufferOutPtr();

BTDeviceCount() Value

This method returns the number of devices defined within the Bluetooth device table.

byte x = BTDeviceCount();

BTDeviceNameCount() Value

This method returns the number of device names defined within the Bluetooth device
table. This usually has the same value as BTDeviceCount but it can differ in some
instances.

byte x = BTDeviceNameCount();

BTDeviceName(idx) Value

This method returns the name of the device at the specified index in the Bluetooth
device table.

string name = BTDeviceName(0);

BTConnectionName(idx) Value

This method returns the name of the device at the specified index in the Bluetooth
connection table.

string name = BTConnectionName(0);

BTConnectionPinCode(idx) Value

This method returns the pin code of the device at the specified index in the Bluetooth
connection table.

string pincode = BTConnectionPinCode(0);

NXC Programmer's Guide

Page 84

BrickDataName() Value

This method returns the name of the NXT.

string name = BrickDataName();

GetBTDeviceAddress(idx, out data) Function

This method reads the address of the device at the specified index within the
Bluetooth device table and stores it in the data buffer provided.

GetBTDeviceAddress(0, buffer);

GetBTConnectionAddress(idx, out data) Function

This method reads the address of the device at the specified index within the
Bluetooth connection table and stores it in the data buffer provided.

GetBTConnectionAddress(0, buffer);

GetBrickDataAddress(out data) Function

This method reads the address of the NXT and stores it in the data buffer provided.

GetBrickDataAddress(buffer);

BTDeviceClass(idx) Value

This method returns the class of the device at the specified index within the Bluetooth
device table.

long class = BTDeviceClass(idx);

BTDeviceStatus(idx) Value

This method returns the status of the device at the specified index within the
Bluetooth device table.

byte status = BTDeviceStatus(idx);

BTConnectionClass(idx) Value

This method returns the class of the device at the specified index within the Bluetooth
connection table.

long class = BTConnectionClass(idx);

BTConnectionHandleNum(idx) Value

This method returns the handle number of the device at the specified index within the
Bluetooth connection table.

byte handlenum = BTConnectionHandleNum(idx);

NXC Programmer's Guide

Page 85

BTConnectionStreamStatus(idx) Value

This method returns the stream status of the device at the specified index within the
Bluetooth connection table.

byte streamstatus = BTConnectionStreamStatus(idx);

BTConnectionLinkQuality(idx) Value

This method returns the link quality of the device at the specified index within the
Bluetooth connection table.

byte linkquality = BTConnectionLinkQuality(idx);

BrickDataBluecoreVersion() Value

This method returns the bluecore version of the NXT.

int bv = BrickDataBluecoreVersion();

BrickDataBtStateStatus() Value

This method returns the Bluetooth state status of the NXT.

int x = BrickDataBtStateStatus();

BrickDataBtHardwareStatus() Value

This method returns the Bluetooth hardware status of the NXT.

int x = BrickDataBtHardwareStatus();

BrickDataTimeoutValue() Value

This method returns the timeout value of the NXT.

int x = BrickDataTimeoutValue();

3.13.3 IOMap Offsets
Comm Module Offsets Value Size
CommOffsetPFunc 0 4
CommOffsetPFuncTwo 4 4
CommOffsetBtDeviceTableName(p) (((p)*31)+8) 16
CommOffsetBtDeviceTableClassOfDevice(p) (((p)*31)+24) 4
CommOffsetBtDeviceTableBdAddr(p) (((p)*31)+28) 7
CommOffsetBtDeviceTableDeviceStatus(p) (((p)*31)+35) 1
CommOffsetBtConnectTableName(p) (((p)*47)+938) 16
CommOffsetBtConnectTableClassOfDevice (p) (((p)*47)+954) 4
CommOffsetBtConnectTablePinCode(p) (((p)*47)+958) 16
CommOffsetBtConnectTableBdAddr(p) (((p)*47)+974) 7
CommOffsetBtConnectTableHandleNr(p) (((p)*47)+981) 1
CommOffsetBtConnectTableStreamStatus(p) (((p)*47)+982) 1
CommOffsetBtConnectTableLinkQuality(p) (((p)*47)+983) 1
CommOffsetBtConnectTableSpare(p) (((p)*47)+984) 1
CommOffsetBrickDataName 1126 16

NXC Programmer's Guide

Page 86

CommOffsetBrickDataBluecoreVersion 1142 2
CommOffsetBrickDataBdAddr 1144 7
CommOffsetBrickDataBtStateStatus 1151 1
CommOffsetBrickDataBtHwStatus 1152 1
CommOffsetBrickDataTimeOutValue 1153 1
CommOffsetBtInBufBuf 1157 128
CommOffsetBtInBufInPtr 1285 1
CommOffsetBtInBufOutPtr 1286 1
CommOffsetBtOutBufBuf 1289 128
CommOffsetBtOutBufInPtr 1417 1
CommOffsetBtOutBufOutPtr 1418 1
CommOffsetHsInBufBuf 1421 128
CommOffsetHsInBufInPtr 1549 1
CommOffsetHsInBufOutPtr 1549 1
CommOffsetHsOutBufBuf 1553 128
CommOffsetHsOutBufInPtr 1681 1
CommOffsetHsOutBufOutPtr 1682 1
CommOffsetUsbInBufBuf 1685 64
CommOffsetUsbInBufInPtr 1749 1
CommOffsetUsbInBufOutPtr 1750 1
CommOffsetUsbOutBufBuf 1753 64
CommOffsetUsbOutBufInPtr 1817 1
CommOffsetUsbOutBufOutPtr 1818 1
CommOffsetUsbPollBufBuf 1821 64
CommOffsetUsbPollBufInPtr 1885 1
CommOffsetUsbPollBufOutPtr 1886 1
CommOffsetBtDeviceCnt 1889 1
CommOffsetBtDeviceNameCnt 1890 1
CommOffsetHsFlags 1891 1
CommOffsetHsSpeed 1892 1
CommOffsetHsState 1893 1
CommOffsetUsbState 1894 1

Table 65. Comm Module IOMap Offsets

