Not eXactly C
(NXC)

Programmer's Guide

Version 1.0.1 b30

June 6, 2007

by John Hansen

Contents

R 01 0o [od o o OSSP 1
2 THE NXC LANGUAGE -..eeeeeereeiteeiteeiesieeste et sieeste e sseesteebesseesbeebessessteesbesneesseensesneesrens 2
2.1 LeXICAl RUIES ..ottt nne e 2
2.1.1 L0011 010117 0 £ RPN 2
2.1.2 WWHITESPACEc.veceieceeie ettt e e e teeneennees 2
213 NUMEriCal CONSLANTS........coiiiiiiiie e 3
2.1.4 Identifiers and KEYWOIUS.........cccoveieeiiiiesie e 3
2.2 Program SEIUCKUIEooouiiiee et 3
2.2.1 LI TSSO 3
2.2.2 FUNCLIONS ...ttt e et be e e e e beesnee s 4
2.2.3 VaANTADIES ... nne s 6
2.2.4 SETUCTS L.t e e e et e e e e ars 7
2.2.5 AATTAYS .ttt 8
2.3 SEALBMIBNTS ...t raa e 9
2.3.1 Variable DecClarationcccccveeiiiiieie e 9
2.3.2 ASSIGNMENT ..ttt st et beebesneenreas 9
2.3.3 CONLIOL SEIUCLUIES ...ttt sae e enees 10
234 The asm StatEMENT.........coiiiiiie e 12
2.35 Other STAtEMENTS.......ecii e 14
A (o] (=115 0] USRS 14
24.1 CONAITIONS ...ttt reesaeeneenrees 15
2.5 TNE PrePIOCESSONcovieeiiiieesteeiestee sttt tee sttt ettt steete st esbeebe s sreeneennes 16
2.5.1 2 10 To] [0 [ST S 16
2.5.2 HACTING. .. 16
2.5.3 H# (CONCALENALION)veveeieeie et sre e e 17
254 Conditional Compilation............coiieiiiiiiiereie e 17

3 NDXC AP bbb 18
3.1 GENEIAl FRALUIESvveievieiie ettt ettt re b 18
3.1.1 TIMING FUNCLIONSviiieiic et 18
3.1.2 Program Control FUNCLIONS...........coiiiiiiieice e 19
3.1.3 SErNG FUNCHIONS ..ot enees 20
3.1.4 AITAY FUNCLHIONS ..ttt 21
3.15 NUMEIIC FUNCLIONS......eiiiieiecie et 22
3.2 INPUE IMIOQUIE. ... 23
3.2.1 TYPES @NA IMOUESc.veeveeeiiecieeie e 23
3.2.2 SeNSOr INFOIMALION.ccviiieiic e 27
3.2.3 @ o o O] 1 1513 £ SRS 30
3.3 OULPUL MOTUIE ... e e 30
3.3.1 ConVENIENCE CallScveiiiiiee et 34
3.3.2 Primitive CallScvoeiieeei e 39
3.3.3 @ o o O] 1 1513 £SO 41
3.4 1O MaAP AQUIESSES. ... ettt sttt sttt sbe e beesbe e e 42
TR T 1o 10 o I8 \Y/ oo 1] USSR 43
351 High-level fUNCLIONS.........cco i 43

3.5.2 LOW-IEVE] FUNCLIONS ... 44

3.5.3 @ o o O] 1 1513 £ S SPS 46
3.6 TOCHT MOTUIE........oeieee e e 47
3.6.1 @ o o O] 1 1513 £ SR 47
3.7 DiSPlay MOUUIE ..o et 47
3.7.1 High-level fUNCLIONS.........ccooiiiece e 48
3.7.2 LOW-IEVEl TUNCHIONS ... 49
3.7.3 @ o o O] 1 1513 £ SRS 51
3.8 L0ader MOQUIE........coouieiciie et e e 51
3.8.1 @ o o O] 1 1513 £ S SS 56
3.9 Command MOGUIEcuiiiiieee e e s 56
3.9.1 @1 o o O] 1 1513 £ SR S 56
3,10 BULEON MOAUIE ... e e s 56
3.10.1 High-level FUNCHIONS.........ccoveiiee e 57
3.10.2 LoW-leVel FUNCHIONSc.eoiieiiiie e 57
T8 0 R (0 1V F- Vo @) 5 71 USSP 59
T8 O 1 IV oo [0 =PRSS 59
T8 I R (O 1V F- Vo @) 5 71 USRS 63
312 LOWSPEEA MOAUIE ..o e e s 63
3.12.1 High-level FUNCHIONS.........ccoveiiee e 65
3.12.2 LoW-IeVel FUNCHIONScc.eiiiiiiie e 66
TN 7 T (O 1V F- Vo @) 5 71 SRS 70
313 COMM MOAUIE ... e e 70
3.13.1 High-level FUNCHIONS.........ccoviiiee e 71
3.13.2 LoW-IeVel FUNCHIONSc.eeiiiiiiee e 75
3.13.3 1OMAP OFFSELS ..ocvveceeeieeieciese ettt ne e 85

Page ii

List of Tables

Table 1. NXC KEYWOIUS.ccveiieieiiieieeiesee et ee e ae e e ste e esteasaesraesseeneesnaeseeneenrens 3
Table 2. Variable TYPEScui ettt 6
LI L0 LR T O LT - U0 £ SRS 10
Table 4. ASM KEYWOITSccviiiiiiieieiieite ettt sre et sneenne e 13
LI L0 Lo ST T o £ 1S1S] o] SRRSO 15
Table 6. CONAITIONSooiiiiie e sbe e e re e 16
Table 7. Input Module CONSTANTS.........cccueiiiieiieceee e 23
Table 8. Sensor TYPe CONSTANTS.uiiiriiiiiiie e ee e 24
Table 9. Sensor Mode CONSIANTSc.cccveiieieieere e nne e 24
Table 10. Sensor Configuration CONSLANTSccveeerirrieie e 24
Table 11. Sensor Field CONSLANTS.........ccceiiiiiiieceec e 25
Table 12. Input Module IOMaP OFFSELScciieiiiieiieriee e 30
Table 13. Output Module CONSEANESccveieiieieeie e 30
Table 14. Output Field CONSTANTScceiiiiiiiieieeeeree e 33
Table 15. UpdateFlag CONStANTSc.ccvveiieieiieieeie e 33
Table 16. OutputMOde CONSEANTScoviiiieciecee e 34
Table 17. RUNSEAte CONSANTSccvveieiieiireie et snaenne e 34
Table 18. RegMOode CONSANTS.........ccoiiiiiiiic et 34
Table 19. RESEt CONSIANTS.........ciieiiieieiiecie et sre e sraenne e 34
Table 20. OULPUL POrt CONSTANTS......cccvviiieiieecie et re e 35
Table 21. Output Module TOMaP OFFSELS........cceiiieiiiieiiee e 42
Table 22. IOMA CONSTANTScuiiiieciie it e e nae e e re e 42
Table 23. Sound Module CONSTANTSccveieiieieee e 43
Table 24. Sound FIags CONSTANTS.........cccuiiiiiiiie et 44
Table 25. SouNd State CONSTANTSccveiiiieiiere e 44
Table 26. Sound Mode CONSTANTScciiiiiieiie e 44
Table 27. Miscellaneous Sound CONSLANTScccveveiieeriere e 45
Table 28. Sound Module IOMaP OFFSELS........ccoviiiiiiiieriee e 46
Table 29. IOCtrl Module CONSTANTS.........ccveieiieieee e 47
Table 30. IOCtrl Module IOMaP OFFSELSooeeiiirieiieiiee e 47
Table 31. Display Module CONSLANTS...........ccviieiieieciere e 47
Table 32. Display FIags CONStaNtS.........cccvoviiiiiiiieiie s 49
Table 33. Display Module IOMap OFfSEtSccoveiiiiieiiee e 51
Table 34. Loader Module CONSEaNTS..........ccveiiiiiie i 52
Table 35. Loader RESUITL COUES..........cuviieiieiecee e 52
Table 36. Loader Module IOMap OFfSELS........ccueiiriiiiiiiie e 56
Table 37. Command Module CONSTANES...........cceiveiiiieieee e 56
Table 38. Command Module IOMap OFFSELSccvueiiriieirie e, 56
Table 39. Button Module CONSIANTSccveieiieiieieciece e 56
Table 40. BULtON CONSTANTS......ccviiiieiieeiie et sree e re e 57
Table 41. Button State CONSTANTS.........cccueiiiieiie et 57
Table 42. Button Module IOMap OFfSELS.......ccceiiiiiiieriee e 59
Table 43. Ul Module CONSTANTScc.eiiieiiiiecie e 59
Table 44. Ul Command FIags CONSTANTSceoiiriiiiiiiiie e 60

Page iii

Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.

O]] = (I G0] 1 1S) 1= | R 60
UL BULEON CONSEANTS.......oii ittt e e sibb b ree e e e e e s s snbrrreee s 60
Ul Bluetooth State CoNnStaNtS.........c.eeeiiieeiiiie i 60
Ul Module IOMaEP OFfSELS.....ccuviieiieiecieseesie e 63
LowSpeed Module CONSLANTScc.eieiiieiiiie e 63
Lowspeed (12C) Return Value CONStantS.........cccocveverieereeiieseeseseeseese e 64
Low Speed State CONSTANTS........ceeiuiiiiiieie et 66
Low Speed Channel State CoNStaNtScccoviveiiiiiesieene e 66
Low Speed Mode CONSLANTSveeeeieiriieieiie et 66
Low Speed Error TYpe CONSLANTS........cccveieiieieeresieseese e e e seesie e 67
LowSpeed Module IOMap OFfSEtS.......cccoiiiiiiieienie e 70
Comm MOodule CONSTANEScccveiiiriie i aee e 70
Comm Miscellaneous CONSLANTS...........coeeiiiieiiie e 75
Comm BtState CONSIANTS.......ccvvveieiieeiiiiiiiiree e e s eanrees 76
Comm BtStateStatus CONSLANTSeeeeiiiiiii e 76
Comm BtHWSTEAtUS CONSLANTS ...vvveeiieeiiiiiiiiieiiee et eanees 76
Comm HSFIags CONSLANTS........ccueiiiiieiiiie e e s 76
Comm HSState CONSIANTSc.vvvieiiieeei i eanees 76
Comm DeVviceStatus CONSANTS.ccoivieiiieeiie e aee e 76
Comm Module Interface CoNSLANESccovieiiiiieiiiee e 77
Comm Module IOMaP OFFSELSccveiiiieiieierie e s 86

Page iv

NXC Programmer's Guide

1 Introduction

NXC stands for Not eXactly C. It is a simple language for programming the LEGO
MINDSTORMS NXT product. The NXT has a bytecode interpreter (provided by
LEGO), which can be used to execute programs. The NXC compiler translates a source
program into NXT bytecodes, which can then be executed on the target itself. Although
the preprocessor and control structures of NXC are very similar to C, NXC is not a
general-purpose programming language - there are many restrictions that stem from
limitations of the NXT bytecode interpreter.

Logically, NXC is defined as two separate pieces. The NXC language describes the
syntax to be used in writing programs. The NXC Application Programming Interface
(API) describes the system functions, constants, and macros that can be used by
programs. This API is defined in a special file known as a "header file" which is, by
default, automatically included when compiling a program.

This document describes both the NXC language and the NXC API. In short, it provides
the information needed to write NXC programs. Since there are different interfaces for
NXC, this document does not describe how to use any specific NXC implementation
(such as the command-line compiler or Bricx Command Center). Refer to the
documentation provided with the NXC tool, such as the NXC User Manual, for
information specific to that implementation.

For up-to-date information and documentation for NXC, visit the NXC website at
http://bricxcc.sourceforge.net/nxc/.

Page 1

NXC Programmer's Guide

2 The NXC Language

This section describes the NXC language itself. This includes the lexical rules used by
the compiler, the structure programs, statements, and expressions, and the operation of
the preprocessor.

NXC is a case-sensitive language just like C and C++. That means that the identifier
"xYZz" is not the same identifier as "Xyz". Similarly, the "if" statement begins with the
keyword "if" but "iF", "If", or "IF" are all just valid identifiers — not keywords.

2.1 Lexical Rules

The lexical rules describe how NXC breaks a source file into individual tokens. This
includes the way comments are written, the handling of whitespace, and valid characters
for identifiers.

2.1.1 Comments

Two forms of comments are supported in NXC. The first form (traditional C comments)
begin with /* and end with */. They may span multiple lines, but do not nest:

/* this is a comment */

/* this is a two
line comment */

/* another comment. ..
/* trying to nest...
ending the inner comment...*/
this text is no longer a comment! */

The second form of comments begins with // and ends with a newline (sometimes
known as C++ style comments).

// a single line comment

The compiler ignores comments. Their only purpose is to allow the programmer to
document the source code.

2.1.2 Whitespace

Whitespace (spaces, tabs, and newlines) is used to separate tokens and to make programs
more readable. As long as the tokens are distinguishable, adding or subtracting
whitespace has no effect on the meaning of a program. For example, the following lines
of code both have the same meaning:

X=2;

X = 2 ;
Some of the C++ operators consist of multiple characters. In order to preserve these
tokens whitespace must not be inserted within them. In the example below, the first line

Page 2

NXC Programmer's Guide

uses a right shift operator (">>"), but in the second line the added space causes the '>'
symbols to be interpreted as two separate tokens and thus generate an error.

X =1>> 4; // set x to 1 right shifted by 4 bits

X =1>>4; // error

2.1.3 Numerical Constants
Numerical constants may be written in either decimal or hexadecimal form. Decimal
constants consist of one or more decimal digits. Hexadecimal constants start with Ox or
0X followed by one or more hexadecimal digits.

10; // set x to 10
0x10; // set x to 16 (10 hex)

X
X

2.1.4 ldentifiers and Keywords

Identifiers are used for variable, task, function, and subroutine names. The first character
of an identifier must be an upper or lower case letter or the underscore ('_"). Remaining
characters may be letters, numbers, and an underscore.

A number of potential identifiers are reserved for use in the NXC language itself. These
reserved words are call keywords and may not be used as identifiers. A complete list of
keywords appears below:

__ RETURN___ case inline sub

_ RETVAL___ char int switch
__ STRRETVAL_ const long task

__ _TMPBYTE___ continue mutex true
__TMPWORD___ default repeat typedef
__ _TMPLONG___ do return unsigned
abs else short until
asm false sign void
bool for start while
break goto string

byte if struct

Table 1. NXC Keywords

2.2 Program Structure

An NXC program is composed of code blocks and variables. There are two distinct types
of code blocks: tasks and functions. Each type of code block has its own unique features,
but they share a common structure.

2.2.1 Tasks

The NXT supports multi-threading, so a task in NXC directly corresponds to an NXT
thread. Tasks are defined using the task keyword using the following syntax:

Page 3

NXC Programmer's Guide

task name()

// the task"s code is placed here

}

The name of the task may be any legal identifier. A program must always have at least
one task - named "main" - which is started whenever the program is run. The maximum
number of tasks is 256.

The body of a task consists of a list of statements. Scheduling dependant tasks using the
Precedes or Follows API function is the primary mechanism supported by the NXT for
starting other tasks concurrently. Tasks may also be started using the start statement.
Tasks cannot be stopped by another task, however. The only way to stop a task is by
stopping all tasks using the Stop function or by a task stopping on its own via the ExitTo
function or by task execution simply reaching the end of the task.

2.2.2 Functions

It is often helpful to group a set of statements together into a single function, which can
then be called as needed. NXC supports functions with arguments and return values.
Functions are defined using the following syntax:

[inline] return_type name(argument_list)

// body of the function
}

The return type should be the type of data returned. In the C programming language,
functions are specified with the type of data they return. Functions that do not return data
are specified to return void.

The argument list may be empty, or may contain one or more argument definitions. An
argument is defined by its type followed by its name. Commas separate multiple
arguments. All values are represented as bool, char, byte, int, short, long, unsigned int,
unsigned long, strings, struct types, or arrays of any type. NXC also supports passing
argument types by value, by constant value, by reference, and by constant reference.

When arguments are passed by value from the calling function to the callee the compiler
must allocate a temporary variable to hold the argument. There are no restrictions on the
type of value that may be used. However, since the function is working with a copy of the
actual argument, the caller will not see any changes it makes to the value. In the example
below, the function foo attempts to set the value of its argument to 2. This is perfectly
legal, but since foo is working on a copy of the original argument, the variable y from
main task remains unchanged.

Page 4

NXC Programmer's Guide

void foo(int Xx)

{

X = 2;
¥
task main()
{

inty=1; // vy is now equal to 1
foo(y); // vy is still equal to 1!

The second type of argument, const arg_type, is also passed by value, but with the
restriction that only constant values (e.g. numbers) may be used. This is rather important
since there are a few NXT functions that only work with constant arguments.

void foo(const int x)

{
PlaySound(X); // ok
X =1; // error - cannot modify argument
}
task main(Q)
{
foo(2); // ok
foo(4*5); // ok - expression is still constant
foo(X); // error - X Is not a constant
}

The third type, arg_type &, passes arguments by reference rather than by value. This
allows the callee to modify the value and have those changes visible in the caller.
However, only variables may be used when calling a function using arg_type &
arguments:

void foo(int &x)

{
X = 2;
}
task main(Q)
{
inty =1; // vy is equal to 1
foo(y); // y is now equal to 2
foo(2); // error - only variables allowed
}

The fourth type, const arg_type &, is rather unusual. It is also passed by reference,
but with the restriction that the callee is not allowed to modify the value. Because of this
restriction, the compiler is able to pass anything (not just variables) to functions using
this type of argument. In general this is the most efficient way to pass arguments in NXC.

Functions must be invoked with the correct number (and type) of arguments. The
example below shows several different legal and illegal calls to function foo:

Page 5

NXC Programmer's Guide

void foo(int bar, const int baz)

// do something here. ..

}
task main()
{
int x; // declare variable x
foo(l, 2); // ok
foo(x, 2); // ok
foo(2, x); // error - 2nd argument not constant!
foo(2); // error - wrong number of arguments!
}

NXC functions may optionally be marked as inline functions. This means that each call
to a function will result in another copy of the function's code being included in the
program. Unless used judiciously, inline functions can lead to excessive code size.

If a function is not marked as inline then an actual NXT subroutine is created and the call

to the function in NXC code will result in a subroutine call to the NXT subroutine. The
total number of non-inline functions (aka subroutines) and tasks must not exceed 256.

2.2.3 Variables
All variables in NXC are of the following types:

Type Name Information

bool 8 bit unsigned

byte, unsigned char | 8 bit unsigned

char 8 bit signed

unsigned int 16 bit unsigned

short, int 16 bit signed

unsigned long 32 bit unsigned

long 32 bit signed

mutex Special type used for exclusive code access
string Array of byte

struct User-defined structure types
Arrays Arrays of any type

Table 2. Variable Types

Variables are declared using the keyword for the desired type followed by a comma-
separated list of variable names and terminated by a semicolon (*;"). Optionally, an initial

value for each variable may be specified using an equals sign ('=") after the variable

name. Several examples appear below:

int x;
bool y,z;

// declare x
// declare y and z

long a=1,b; // declare a and b, initialize a to 1

Page 6

NXC Programmer's Guide

Global variables are declared at the program scope (outside of any code block). Once
declared, they may be used within all tasks, functions, and subroutines. Their scope
begins at declaration and ends at the end of the program.

Local variables may be declared within tasks and functions. Such variables are only
accessible within the code block in which they are defined. Specifically, their scope
begins with their declaration and ends at the end of their code block. In the case of local
variables, a compound statement (a group of statements bracketed by '{' and '}") is
considered a block:

int x; // x is global

task main(Q)
{
inty; // vy is local to task main
X =vy; // ok
{ // begin compound statement
int z; // local z declared
y = z; // ok
}
y = z; // error - z no longer in scope
¥
task foo()
{
x =1; // ok
y = 2; // error - y is not global
}

2.2.4 Structs

NXC supports user-defined aggregate types known as structs. These are declared very
much like you declare structs in a C program.

struct car

A

string car_type;
int manu_year;

}:

struct person
i
string name;
int age;
car vehicle;

¥

myType fred = 23;
person myPerson;

Page 7

NXC Programmer's Guide

After you have defined the structure type you can use the new type to declare a variable
or nested within another structure type declaration. Members (or fields) within the struct
are accessed using a dot notation.

myPerson.age = 40;
anotherPerson = myPerson;

fooBar .car_type = "honda’;
fooBar .manu_year = anotherPerson.age;

You can assign structs of the same type but the compiler will complain if the types do not
match.

2.2.5 Arrays

NXC also support arrays. Arrays are declared the same way as ordinary variables, but
with an open and close bracket following the variable name.

int my_array[]; // declare an array with O elements

To declare arrays with more than one dimension simply add more pairs of square
brackets. The maximum number of dimensions supported in NXC is 4.

bool my array[1[]; // declare a 2-dimensional array

Global arrays with one dimension can be initialized at the point of declaration using the
following syntax:

int X[1 = {1, 2, 3, 4}, Y[={10, 10}; // 2 arrays

The elements of an array are identified by their position within the array (called an
index). The first element has an index of 0, the second has index 1, etc. For example:

my_array[O0] = 123; // set fTirst element to 123
my_array[1] = my_array[2]; // copy third into second

Currently there are some limitations on how arrays can be used. Some of these limitations
will likely be removed in future versions of NXC.

To initialize local arrays or arrays with multiple dimensions it is necessary to use the
Arraylnit function. The following example shows how to initialize a two-dimensional
array using Arraylnit. It also demonstrates some of the supported array API functions
and expressions.

task main()

{
int myArray[1[1;
int myVector[];

byte fooArray[1[1[1;

Arraylnit(myVector, 0, 10); // 10 zeros in myVector
Arraylnit(myArray, myVector, 10); // 10 vectors myArray
Arraylnit(fooArray, myArray, 2); // 2 myArrays in TooArray

Page 8

NXC Programmer's Guide

myVector = myArray[1l]; // okay as of b25
fooArray[1] = myArray; // okay as of b25
myVector[4] = 34;

myArray[1] = myVector; // okay as of b25

int ax[], ay[l;

ArrayBuild(ax, 5, 6);

ArrayBuild(ay, 2, 10, 6, 43);

int axlen = ArrayLen(ax);

ArraySubset(ax, ay, 1, 2); // ax = {10, 6}

if (ax == ay) { // array comparisons supported as of b25

}
}

2.3 Statements

The body of a code block (task or function) is composed of statements. Statements are
terminated with a semi-colon (';").

2.3.1 Variable Declaration

Variable declaration, as described in the previous section, is one type of statement. It
declares a local variable (with optional initialization) for use within the code block. The
syntax for a variable declaration is:

int variables;

where variables is a comma separated list of names with optional initial value:
name[=expression]

Arrays of variables may also be declared:

int array[][=initializer for global one-dimension arrays];

2.3.2 Assignment
Once declared, variables may be assigned the value of an expression:
variable assign_operator expression;
There are nine different assignment operators. The most basic operator, '=', simply

assigns the value of the expression to the variable. The other operators modify the
variable's value in some other way as shown in the table below

Operator | Action
= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression

= Divide variable by expression

%= Set variable to remainder after dividing by expression

= Bitwise AND expression into variable
= Bitwise OR expression into variable

Page 9

NXC Programmer's Guide

A= Bitwise exclusive OR into variable

[|I= Set variable to absolute value of expression
+-= Set variable to sign (-1,+1,0) of expression
>>= Right shift variable by expression

<<= Left shift variable by expression

Table 3. Operators
Some examples:

X = 2; // set x to 2
y =7; // sety to 7
X += y; // X is 9, y is still 7

2.3.3 Control Structures

The simplest control structure is a compound statement. This is a list of statements
enclosed within curly braces (‘{' and '}"):
{
1;
2;

X
y
}

Although this may not seem very significant, it plays a crucial role in building more
complicated control structures. Many control structures expect a single statement as their
body. By using a compound statement, the same control structure can be used to control
multiple statements.

The i f statement evaluates a condition. If the condition is true it executes one statement
(the consequence). An optional second statement (the alternative) is executed if the
condition is false. The two syntaxes for an i f statement is shown below.

if (condition) consequence
if (condition) consequence else alternative

Note that the condition is enclosed in parentheses. Examples are shown below. Note how
a compound statement is used in the last example to allow two statements to be executed
as the consequence of the condition.

if x=1)vy=2;

if (x=1) y=3; elsey = 4;

ifG=D){y=1;2z=2;1}%
The whi le statement is used to construct a conditional loop. The condition is evaluated,
and if true the body of the loop is executed, then the condition is tested again. This
process continues until the condition becomes false (or a break statement is executed).
The syntax for a whi le loop appears below:

while (condition) body
It is very common to use a compound statement as the body of a loop:

while(x < 10)
{

X = X+1;

Page 10

NXC Programmer's Guide

y = y*2;
}

A variant of the whi le loop is the do-whi le loop. Its syntax is:
do body while (condition)

The difference between a whi le loop and a do-whi le loop is that the do-whi le loop
always executes the body at least once, whereas the whi le loop may not execute it at all.

Another kind of loop is the for loop:
for(stmtl ; condition ; stmt2) body

A for loop always executes stmtl, then it repeatedly checks the condition and while it
remains true executes the body followed by stmt2. The for loop is equivalent to:

stmtl;
while(condition)

{
body

stmt2;
3

The repeat statement executes a loop a specified number of times:
repeat (expression) body

The expression determines how many times the body will be executed. Note: It is only
evaluated a single time and then the body is repeated that number of times. This is
different from both the whi e and do-whi le loops which evaluate their condition each
time through the loop.

A switch statement can be used to execute one of several different blocks of code
depending on the value of an expression. One or more case labels precede each block of
code. Each case must be a constant and unique within the switch statement. The switch
statement evaluates the expression then looks for a matching case label. It will then
execute any statements following the matching case until either a break statement or the
end of the switch is reached. A single defaul t label may also be used - it will match any
value not already appearing in a case label. Technically, a switch statement has the
following syntax:

switch (expression) body

The case and default labels are not statements in themselves - they are labels that precede
statements. Multiple labels can precede the same statement. These labels have the
following syntax

case constant_expression :
default :

A typical switch statement might look like this:

Page 11

NXC Programmer's Guide

switch(x)
{

case 1:
// do something when X is 1
break;

case 2:

case 3:
// do something else when x is 2 or 3
break;

default:
// do this when X is not 1, 2, or 3
break;

}

NXC also supports using string types in the switch expression and constant strings in case
labels.

The goto statement forces a program to jump to the specified location. Statements in a
program can be labeled by preceding them with an identifier and a colon. A goto
statement then specifies the label that the program should jump to. For example, this is
how an infinite loop that increments a variable could be implemented using goto:
my_loop:
X++;
goto my_loop;

The goto statement should be used sparingly and cautiously. In almost every case,
control structures such as i f, while, and switch make a program much more readable
and maintainable than using goto.

NXC also defines the unti | macro which provides a convenient alternative to the
whi le loop. The actual definition of until is:
#define until(c) while(1(c))
In other words, unti I will continue looping until the condition becomes true. It is most
often used in conjunction with an empty body statement:
until(SENSOR_1 == 1); // wait for sensor to be pressed

2.3.4 The asm Statement

The asm statement is used to define many of the NXC API calls. The syntax of the
statement is:

asm {
one or more lines of assembly language

}

The statement simply emits the body of the statement as NeXT Byte Codes (NBC) code
and passes it directly to the NBC compiler backend. The asm statement can often be used
to optimize code so that it executes as fast as possible on the NXT firmware. The

Page 12

NXC Programmer's Guide

following example shows an asm block containing variable declarations, labels, and basic
NBC statements as well as comments.

asm {
// Jmp __ IbI0O0D5
dseg segment
s10000 slong
s10005 slong
bGTTrue byte
dseg ends
mov sl10000, OxO
mov sl10005, s10000
mov sl10000, Ox1
cmp GT, bGTTrue, s10005, s10000
set bGTTrue, FALSE
brtst EQ, _ IbI00D5, bGTTrue
__Ibl00D5:

}

A few NXC keywords have meaning only within an asm statement. These keywords
provide a means for returning string or scalar values from asm statements and for using
temporary integer variables of byte, word, and long sizes.

ASM Keyword Meaning
__RETURN___ Used to return a value other than _ RETVAL__ or
_ STRRETVAL__
__ RETVAL___ Writing to this 4-byte value returns it to the calling program
_ STRRETVAL_ Writing to this string value returns it to the calling program
__ _TMPBYTE___ Use this temporary variable to write and return single byte values
___TMPWORD Use this temporary variable to write and return 2-byte values
__ _TMPLONG___ Use this temporary variable to write and return 4-byte values

Table 4. ASM Keywords

The asm block statement and these special ASM keywords are used throughout the NXC
API. See the NXCDefs.h header file for several examples of how they can be put to use.
To keep the main NXC code as "C-like" as possible and for the sake of better readability
NXC asm block statements can be wrapped in preprocessor macros and placed in custom
header files which are included using #include. The following example demonstrates
using macro wrappers around asm block statements.

#define SetMotorSpeed(port, cc, thresh, fast, slow) \
asm { \
set theSpeed, fast \
brcmp cc, Endifout__1__, SV, thresh \
set theSpeed, slow \
EndIfOut__1__ - \
OnFwd(port, theSpeed) \
__Incl_ \

}

Page 13

NXC Programmer's Guide

2.3.5 Other Statements
A function call is a statement of the form:
name(arguments);

The arguments list is a comma-separated list of expressions. The number and type of
arguments supplied must match the definition of the function itself.

Tasks may be started with the start statement.
start task name;

Within loops (such as a whi Ie loop) the break statement can be used to exit the loop
and the continue statement can be used to skip to the top of the next iteration of the
loop. The break statement can also be used to exit a switch statement.

break;
continue;

It is possible to cause a function to return before it reaches the end of its code using the
return statement with an optional return value.

return [expression];

Many expressions are not legal statements. One notable exception is expressions
involving the increment (++) or decrement (--) operators.

X++;

The empty statement (just a bare semicolon) is also a legal statement.

2.4 Expressions

Values are the most primitive type of expressions. More complicated expressions are
formed from values using various operators. The NXC language only has two built in
kinds of values: numerical constants and variables.

Numerical constants in the NXT are represented as integers. The type depends on the
value of the constant. NXC internally uses 32 bit signed math for constant expression
evaluation. Numeric constants can be written as either decimal (e.g. 123) or hexadecimal
(e.g. OXABC). Presently, there is very little range checking on constants, so using a value
larger than expected may have unusual effects.

Two special values are predefined: true and false. The value of false is zero (0),
while the value of true is one (1). The same values hold for relational operators (e.g. <):
when the relation is false the value is 0, otherwise the value is 1.

Values may be combined using operators. Several of the operators may only be used in
evaluating constant expressions, which means that their operands must either be
constants, or expressions involving nothing but constants. The operators are listed here in
order of precedence (highest to lowest).

Operator | Description Associativity Restriction Example

Page 14

NXC Programmer's Guide

abs() Absolute value n/a abs(x)

sign() Sign of operand n/a sign(x)

++, -- Post increment, Post left variables only | x++
decrement

- Unary minus right -X

~ Bitwise negation (unary) right constant only ~123

! Logical negation right Ix

*1, % Multiplication, division, left X*y
modulo

+ - Addition, subtraction left X+y

<<, >> Left and right shift left X << 4

<, >, relational operators left X<y

<=, >=

==, I= equal to, not equal to left X ==

& Bitwise AND left X&Y

n Bitwise XOR left XNy

| Bitwise OR left x|y

&& Logical AND left X &&Yy

[| Logical OR left x|y

?: conditional value n/a x==17?y:z

Table 5. Expressions
Where needed, parentheses may be used to change the order of evaluation:

X =2+ 3 * 4; // set x to 14
y=@@+3) *4; // sety to 20

2.4.1 Conditions

Comparing two expressions forms a condition. There are also two constant conditions -
true and false - that always evaluate to true or false respectively. A condition may be
negated with the negation operator, or two conditions combined with the AND and OR
operators. Unlike some compilers NXC does not support what is called "short-circuit"
evaluation of conditions. If you combine conditions using logical operators all parts of
the condition are evaluated before determining the condition value.

The table below summarizes the different types of conditions.

Condition Meaning

True always true

false always false

Expr true if expr is not equal to 0

Page 15

NXC Programmer's Guide

Exprl == expr2 true if exprl equals expr2

Exprl 1= expr2 true if exprl is not equal to expr2

Exprl < expr2 true if one exprl is less than expr2

Exprl <= expr2 true if exprl is less than or equal to expr2

Exprl > expr2 true if exprl is greater than expr2

Exprl >= expr2 true if exprl is greater than or equal to expr2

! condition logical negation of a condition - true if condition is false

Condl && cond2 logical AND of two conditions (true if and only if both conditions are
true)

Condl || cond2 logical OR of two conditions (true if and only if at least one of the
conditions are true)

Table 6. Conditions

2.5 The Preprocessor

The preprocessor implements the following directives: #include, #define, #ifdef,
#ifndef, #endif, #undef, ##, #line, #pragma. Its implementation is fairly close
to a standard C preprocessor, so most things that work in a generic C preprocessor should
have the expected effect in NXC. Significant deviations are listed below.

2.5.1 #include

The #include command works as expected, with the caveat that the filename must be
enclosed in double quotes. There is no notion of a system include path, so enclosing a
filename in angle brackets is forbidden.

#include "foo.h" // ok
#include <foo.h> // error!

NXC programs usually begin with #include ""NXCDefs.h". This standard header file
includes many important constants and macros which form the core NXC API.

2.5.2 #define

The #define command is used for simple macro substitution. Redefinition of a macro is
an error. The end of the line normally terminates macros, but the newline may be escaped
with the backslash ("\") to allow multi-line macros:

#define foo(x) do { bar(x); \
baz(x); } while(false)

The #undeT directive may be used to remove a macro’s definition.

Page 16

NXC Programmer's Guide

2.5.3 ## (Concatenation)

The ## directive works similar to the C preprocessor. It is replaced by nothing, which
causes tokens on either side to be concatenated together. Because it acts as a separator
initially, it can be used within macro functions to produce identifiers via combination

with parameter values.

2.5.4 Conditional Compilation

Conditional compilation works similar to the C preprocessor. The following preprocessor
directives may be used:

#ifdeft symbol
#i1fndef symbol
#else

#endi T

#i1T condition
#elif

Page 17

NXC Programmer's Guide

3 NXC API

The NXC API defines a set of constants, functions, values, and macros that provide
access to various capabilities of the NXT such as sensors, outputs, and communication.

The API consists of functions, values, and constants. A function is something that can be
called as a statement. Typically it takes some action or configures some parameter.
Values represent some parameter or quantity and can be used in expressions. Constants
are symbolic names for values that have special meanings for the target. Often, a set of
constants will be used in conjunction with a function.

3.1 General Features

3.1.1 Timing Functions

Wait(time) Function

Make a task sleep for specified amount of time (in 1000ths of a second). The time
argument may be an expression or a constant:

Wait(1000); // wait 1 second
Wairt(Random(1000)); // wait random time up to 1 second

CurrentTick() Value

Return an unsigned 32-bit value which is the current system timing value (called a
"tick™) in milliseconds.

X = CurrentTick(Q);

FirstTick() Value

Return an unsigned 32-bit value which is the system timing value (called a "tick") in
milliseconds at the time that the program began running.

X = FirstTick(Q);

SleepTimeout() Value

Return the number of minutes that the NXT will remain on before it automatically
shuts down.

X = SleepTimeout();

SleepTimer() Value

Return the number of minutes left in the countdown to zero from the original
SleepTimeout value. When the SleepTimer value reaches zero the NXT will
shutdown.

X = SleepTimer();

Page 18

NXC Programmer's Guide

ResetSleepTimer() Function

Reset the system sleep timer back to the SleepTimeout value. Executing this function
periodically can keep the NXT from shutting down while a program is running.

ResetSleepTimer();

SetSleepTimeout(minutes) Function

Set the NXT sleep timeout value to the specified number of minutes.
SetSleepTimeout(8);

SetSleepTimer(minutes) Function

Set the system sleep timer to the specified number of minutes.
SetSleepTimer(3);

3.1.2 Program Control Functions

Stop(bvalue) Function

Stop the running program if bvalue is true. This will halt the program completely, so
any code following this command will be ignored.

Stop(x == 24); // stop the program if x==24

Acquire(mutex) Function

Acquire the specified mutex variable. If another task already has acquired the mutex
then the current task will be suspended until the mutex is released by the other task.
This function is used to ensure that the current task has exclusive access to a shared
resource, such as the display or a motor. After the current task has finished using the
shared resource the program should call Release to allow other tasks to acquire the
mutex.

Acquire(motorMutex); // make sure we have exclusive access
// use the motors
Release(motorMutex);

Release(mutex) Function

Release the specified mutex variable. Use this to relinquish a mutex so that it can be
acquired by another task. Release should always be called after a matching call to
Acquire and as soon as possible after a shared resource is no longer needed.

Acquire(motorMutex); // make sure we have exclusive access
// use the motors
Release(motorMutex); // release mutex for other tasks

Page 19

NXC Programmer's Guide

Precedes(taskl, task2, ..., taskN) Function

Schedule the specified tasks for execution once the current task has completed
executing. The tasks will all execute simultaneously unless other dependencies
prevent them from doing so. Generally this function should be called once within a
task — preferably at the start of the task definition.

Precedes(moving, drawing, playing);

Follows(taskl, task2, ..., taskN) Function

Schedule this task to follow the specified tasks so that it will execute once any of the
specified tasks has completed executing. Generally this function should be called
once within a task — preferably at the start of the task definition. If multiple tasks
declare that they follow the same task then they will all execute simultaneously unless
other dependencies prevent them from doing so.

Follows(main);

ExitTo(task) Function

Immediately exit the current task and start executing the specified task.
ExitTo(nextTask);

3.1.3 String Functions

StrToNum(str) Value

Return the numeric value specified by the string passed to the function. If the content
of the string is not a numeric value then this function returns zero.

X = StrToNum(strVval);

StrLen(str) Value

Return the length of the specified string. The length of a string does not include the
null terminator at the end of the string.

X = StrLen(msg); // return the length of msg

Strindex(str, idx) Value
Return the numeric value of the character in the specified string at the specified
index.

x = Strindex(msg, 2); // return the value of msg[2]

NumToStr(value) Value

Return the string representation of the specified numeric value.
msg = NumToStr(-2); // returns "-2" in a string

Page 20

NXC Programmer's Guide

StrCat(strl, str2, ..., strN) Value

Return a string which is the result of concatenating all of the string arguments
together.

msg = StrCat(''test', '"‘please™); // returns "testplease"

SubStr(string, idx, len) Value

Return a sub-string from the specified input string starting at idx and including the
specified number of characters.

msg = SubStr(*‘test”, 1, 2); // returns “‘es"

StrReplace(string, idx, newStr) Value

Return a string with the part of the string replaced (starting at the specified index)
with the contents of the new string value provided in the third argument.

msg = StrReplace('testing'', 3, "xx'); // returns '‘tesxxng"

Flatten(value) Value
Return a string containing the byte representation of the specified value.
msg = Flatten(48); // returns 0" since 48 == ascii("'0"")
msg = Flatten(12337); // returns 10" (little-endian)

3.1.4 Array Functions

ByteArrayToStr(arr, out str) Function

Convert the specified array to a string by appending a null terminator to the end of the
array elements. The array must be a one-dimensional array of byte.

ByteArrayToStr(myArray, myStr);

StrToByteArray(str, out arr) Function

Convert the specified string to an array of byte by removing the null terminator at the
end of the string. The output array variable must be a one-dimensional array of byte.

StrToByteArray(myStr, myArray);

ArrayLen(array) Value

Return the length of the specified array.
X = ArrayLen(myArray);

Page 21

NXC Programmer's Guide

Arraylnit(array, value, count) Function

Initialize the array to contain count elements with each element equal to the value
provided. To initialize a multi-dimensional array, the value should be an array of N-1
dimensions, where N is the number of dimensions in the array being initialized.

Arraylnit(myArray, 0, 10); // 10 elements == zero

ArraySubset(out aout, asrc, idx, len) Function

Copy a subset of the source array starting at the specified index and containing the
specified number of elements into the destination array.

ArraySubset(myArray, srcArray, 2, 5); copy 5 elements

ArrayBuild(out aout, srcl [, src2, ..., srcN]) Function

Build a new array from the specified source(s). The sources can be of any type. If a
source is an array then all of its elements are added to the output array.

ArrayBuild(myArray, srcl, src2);

3.1.5 Numeric Functions

Random(n) Value

Return an unsigned 16-bit random number between 0 and n (exclusive). N can be a
constant or a variable.

X = Random(10); // return a value of 0..9

Random() Value

Return a signed 16-bit random number.
X = Random();

Sqgrt(x) Value
Return the square root of the specified value.
X = Sgrt(x);
Sin(degrees) Value

Return the sine of the specified degrees value. The result is 100 times the sine value
(-100..100).

X = Sin(theta);

Page 22

NXC Programmer's Guide

Cos(degrees) Value

Return the cosine of the specified degrees value. The result is 100 times the cosine
value (-100..100).

X = Cos(y);

Asin(value) Value

Return the inverse sine of the specified value (-100..100). The result is degrees (-
90..90).

deg = Asin(80);

Acos(value) Value

Return the inverse cosine of the specified value (-100..100). The result is degrees
(0..180).

deg = Acos(0);

3.2 Input Module

The NXT input module encompasses all sensor inputs except for digital 12C (LowSpeed)
Sensors.

Module Constants | Value
InputModuleName "Input.mod"
InputModulelD 0x00030001

Table 7. Input Module Constants

There are four sensors, which internally are numbered 0, 1, 2, and 3. This is potentially
confusing since they are externally labeled on the NXT as sensors 1, 2, 3, and 4. To help
mitigate this confusion, the sensor port names S1, S2, S3, and S4 have been defined.
These sensor names may be used in any function that requires a sensor port as an
argument. Alternatively, the NBC port name constants IN_1, IN_2, IN_3,and IN_4
may also be used when a sensor port is required.

Sensor value names SENSOR_ 1, SENSOR_2, SENSOR_ 3, and SENSOR_ 4 have also been
defined. These names may also be used whenever a program wishes to read the current
value of the sensor:

X = SENSOR_1; // read sensor and store value in X

3.2.1 Types and Modes

The sensor ports on the NXT are capable of interfacing to a variety of different sensors. It
is up to the program to tell the NXT what kind of sensor is attached to each port. Calling
SetSensorType configures a sensor's type. There are 12 sensor types, each corresponding
to a specific LEGO RCX or NXT sensor. A thirteenth type (SENSOR_TYPE_NONE) is
used to indicate that no sensor has been configured.

Page 23

NXC Programmer's Guide

In general, a program should configure the type to match the actual sensor. If a sensor
port is configured as the wrong type, the NXT may not be able to read it accurately. Use
either the Sensor Type constants or the NBC Sensor Type constants.

Sensor Type NBC Sensor Type Meaning
SENSOR_TYPE_NONE IN_ TYPE NO SENSOR no sensor configured
SENSOR_TYPE_TOUCH IN_TYPE_SWITCH NXT or RCX touch sensor

SENSOR_TYPE_TEMPERATURE

IN_TYPE_TEMPERATURE

RCX temperature sensor

SENSOR_TYPE_LIGHT

IN_TYPE_REFLECTION

RCX light sensor

SENSOR_TYPE_ROTATION

IN_TYPE_ANGLE

RCX rotation sensor

SENSOR_TYPE_LIGHT_ACTIVE

IN_TYPE_LIGHT ACTIVE

NXT light sensor with light

SENSOR_TYPE_LIGHT_INACTIVE

IN_TYPE_LIGHT_INACTIVE

NXT light sensor without light

SENSOR_TYPE_SOUND DB

IN_TYPE_SOUND DB

NXT sound sensor with dB scaling

SENSOR_TYPE_SOUND_DBA

IN_TYPE_SOUND DBA

NXT sound sensor with dBA scaling

SENSOR_TYPE_CUSTOM

IN_TYPE_CUSTOM

Custom sensor (unused)

SENSOR_TYPE_LOWSPEED

IN_TYPE_LOWSPEED

12C digital sensor

SENSOR_TYPE_LOWSPEED_9V

IN_TYPE_LOWSPEED 9V

12C digital sensor (9V power)

SENSOR_TYPE_HIGHSPEED

IN_TYPE_HISPEED

Highspeed sensor (unused)

Table 8. Sensor Type Constants

The NXT allows a sensor to be configured in different modes. The sensor mode
determines how a sensor's raw value is processed. Some modes only make sense for
certain types of sensors, for example SENSOR_MODE_ROTATION is useful only with
rotation sensors. Call SetSensorMode to set the sensor mode. The possible modes are
shown below. Use either the Sensor Mode constant or the NBC Sensor Mode constant.

Sensor Mode

NBC Sensor Mode

Meaning

SENSOR_MODE_RAW

IN_MODE_RAW

raw value from 0 to 1023

SENSOR_MODE_BOOL

IN_MODE_BOOLEAN

boolean value (0 or 1)

SENSOR_MODE_EDGE

IN_MODE_TRANSITIONCNT

counts number of boolean transitions

SENSOR_MODE_PULSE

IN_MODE_PERIODCOUNTER

counts number of boolean periods

SENSOR_MODE_PERCENT

IN_MODE_PCTFULLSCALE

value from 0 to 100

SENSOR_MODE_FAHRENHEIT

IN_MODE_FAHRENHEIT

degrees F

SENSOR_MODE_CELSIUS

IN_MODE_CELSIUS

degrees C

SENSOR_MODE_ROTATION

IN_MODE_ANGLESTEP

rotation (16 ticks per revolution)

Table 9. Sensor Mode Constants

When using the NXT, it is common to set both the type and mode at the same time. The
SetSensor function makes this process a little easier by providing a single function to call
and a set of standard type/mode combinations.

Sensor Configuration Type

Mode

SENSOR_TOUCH

SENSOR_TYPE_TOUCH

SENSOR_MODE_BOOL

SENSOR_LIGHT

SENSOR_TYPE_LIGHT

SENSOR_MODE_PERCENT

SENSOR_ROTATION

SENSOR_TYPE_ROTATION

SENSOR_MODE_ROTATION

SENSOR_CELSIUS

SENSOR_TYPE_TEMPERATURE

SENSOR_MODE_CELSIUS

SENSOR_FAHRENHEIT

SENSOR_TYPE_TEMPERATURE

SENSOR_MODE_FAHRENHEIT

SENSOR_PULSE

SENSOR_TYPE_TOUCH

SENSOR_MODE_PULSE

SENSOR_EDGE

SENSOR_TYPE_TOUCH

SENSOR_MODE_EDGE

Table 10. Sensor Configuration Constants

The NXT provides a boolean conversion for all sensors - not just touch sensors. This
boolean conversion is normally based on preset thresholds for the raw value. A "low"

Page 24

NXC Programmer's Guide

value (less than 460) is a boolean value of 1. A high value (greater than 562) is a boolean
value of 0. This conversion can be modified: a slope value between 0 and 31 may be
added to a sensor's mode when calling SetSensorMode. If the sensor's value changes
more than the slope value during a certain time (3ms), then the sensor's boolean state will
change. This allows the boolean state to reflect rapid changes in the raw value. A rapid
increase will result in a boolean value of 0, a rapid decrease is a boolean value of 1.

Even when a sensor is configured for some other mode (i.e. SENSOR_MODE_PERCENT),
the boolean conversion will still be carried out.

Each sensor has six fields that are used to define its state. The field constants are
described in the following table.

Sensor Field Constant Meaning

Type The sensor type (see Table 8).
InputMode The sensor mode (see Table 9).
RawValue The raw sensor value
NormalizedValue The normalized sensor value
ScaledValue The scaled sensor value
InvalidData Invalidates the current sensor value

Table 11. Sensor Field Constants

SetSensor(port, const configuration) Function

Set the type and mode of the given sensor to the specified configuration, which must
be a special constant containing both type and mode information. The port may be
specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensor(S1, SENSOR _TOUCH);

SetSensorType(port, const type) Function

Set a sensor's type, which must be one of the predefined sensor type constants. The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorType(S1, SENSOR _TYPE TOUCH);

SetSensorMode(port, const mode) Function

Set a sensor's mode, which should be one of the predefined sensor mode constants. A
slope parameter for boolean conversion, if desired, may be added to the mode. The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorMode(S1, SENSOR_MODE RAW); // raw mode
SetSensorMode(S1, SENSOR_MODE RAW + 10); // slope 10

SetSensorLight(port) Function

Configure the sensor on the specified port as a light sensor (active). The port may be
specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorLight(S1);

Page 25

NXC Programmer's Guide

SetSensorSound(port) Function

Configure the sensor on the specified port as a sound sensor (dB scaling). The port
may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorSound(S1);

SetSensorTouch(port) Function

Configure the sensor on the specified port as a touch sensor. The port may be
specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorSound(S1);

SetSensorLowspeed(port) Function

Configure the sensor on the specified port as an 12C digital sensor (9V powered). The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

SetSensorLowspeed(S1);

Setlnput(port, const field, value) Function

Set the specified field of the sensor on the specified port to the value provided. The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable. The
field must be a sensor field constant. Valid field constants are listed in Table 11. The
value may be any valid expression.

SetInput(S1, Type, IN_TYPE_SOUND_DB);

ClearSensor(const port) Function

Clear the value of a sensor - only affects sensors that are configured to measure a
cumulative quantity such as rotation or a pulse count. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

ClearSensor(Sl);

ResetSensor(port) Function

Reset the value of a sensor. If the sensor type or mode has been modified then the
sensor should be reset in order to ensure that values read from the sensor are valid.
The port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable.

ResetSensor(X); // x = S1

SetCustomSensorZeroOffset(const p, value) Function

Sets the custom sensor zero offset value of a sensor. The port must be specified using
a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorZeroOffset(S1, 12);

Page 26

NXC Programmer's Guide

SetCustomSensorPercentFullScale(const p, value) Function

Sets the custom sensor percent full scale value of a sensor. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorPercentFul I1Scale(S1, 100);

SetCustomSensorActiveStatus(const p, value) Function

Sets the custom sensor active status value of a sensor. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorActiveStatus(S1l, true);

SetSensorDigiPinsDirection(const p, value) Function

Sets the digital pins direction value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsDirection(S1, 1);

SetSensorDigiPinsStatus(const p, value) Function

Sets the digital pins status value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsStatus(S1, false);

SetSensorDigiPinsOutputLevel(const p, value) Function

Sets the digital pins output level value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsOutputLevel (S1, 100);

3.2.2 Sensor Information

There are a number of values that can be inspected for each sensor. For all of these values
the sensor must be specified by a constant port value (e.g., S1, S2, S3, or S4) unless
otherwise specified.

Sensor(n) Value

Return the processed sensor reading for a sensor on port n, where nis 0, 1, 2, or 3 (or
a sensor port name constant). This is the same value that is returned by the sensor
value names (e.g. SENSOR_1). A variable whose value is the desired sensor port may
also be used.

X = Sensor(Sl); // read sensor 1

SensoruUS(n) Value

Return the processed sensor reading for an ultrasonic sensor on port n, where n is 0,
1, 2, or 3 (or a sensor port name constant). Since an ultrasonic sensor is an 12C digital

Page 27

NXC Programmer's Guide

sensor its value cannot be read using the standard Sensor(n) value. A variable whose
value is the desired sensor port may also be used.

X = SensorUS(S4); // read sensor 4

SensorType(n) Value

Return the configured type of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). A variable whose value is the desired sensor port may
also be used.

X = SensorType(Sl);

SensorMode(n) Value

Return the current sensor mode for a sensor on port n, which must be 0, 1, 2, or 3 (or
a sensor port name constant). A variable whose value is the desired sensor port may
also be used.

X = SensorMode(S1);

SensorRaw(n) Value

Return the raw value of a sensor on port n, which must be 0, 1, 2, or 3 (or a sensor
port name constant). A variable whose value is the desired sensor port may also be
used.

X = SensorRaw(Sl);

SensorNormalized(n) Value

Return the normalized value of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). A variable whose value is the desired sensor port may
also be used.

x = SensorNormalized(Sl);

SensorScaled(n) Value

Return the scaled value of a sensor on port n, which must be 0, 1, 2, or 3 (or a sensor
port name constant). A variable whose value is the desired sensor port may also be
used. This is the same as the standard Sensor(n) value.

x = SensorScaled(S1);

Sensorlnvalid(n) Value

Return the value of the InvalidData flag of a sensor on port n, which must be 0, 1, 2,
or 3 (or a sensor port name constant). A variable whose value is the desired sensor
port may also be used.

X = SensorlInvalid(Sl);

Page 28

NXC Programmer's Guide

SensorBoolean(const n) Value

Return the boolean value of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). Boolean conversion is either done based on preset
cutoffs, or a slope parameter specified by calling SetSensorMode.

x = SensorBoolean(S1);

Getlnput(n, const field) Value

Return the value of the specified field of a sensor on port n, which must be 0, 1, 2, or
3 (or a sensor port name constant). A variable whose value is the desired sensor port
may also be used. The field must be a sensor field constant. Valid field constants are
listed in Table 11.

X = Getlnput(Sl, Type);

CustomSensorZeroOffset(const p) Value

Return the custom sensor zero offset value of a sensor on port p, which must be 0, 1,
2, or 3 (or a sensor port name constant).

X = CustomSensorZeroOffset(Sl);

CustomSensorPercentFullScale(const p) Value

Return the custom sensor percent full scale value of a sensor on port p, which must be
0, 1, 2, or 3 (or a sensor port name constant).

X = CustomSensorPercentFullScale(S1);

CustomSensorActiveStatus(const p) Value

Return the custom sensor active status value of a sensor on port p, which must be 0, 1,
2, or 3 (or a sensor port name constant).

X = CustomSensorActiveStatus(Sl);

SensorDigiPinsDirection(const p) Value

Return the digital pins direction value of a sensor on port p, which must be 0, 1, 2, or
3 (or a sensor port name constant).

X = SensorDigiPinsDirection(Sl);

SensorDigiPinsStatus(const p) Value

Return the digital pins status value of a sensor on port p, which must be 0, 1, 2, or 3
(or a sensor port name constant).

X = SensorDigiPinsStatus(Sl);

Page 29

NXC Programmer's Guide

SensorDigiPinsOutputLevel(const p) Value

Return the digital pins output level value of a sensor on port p, which must be 0, 1, 2,
or 3 (or a sensor port name constant).

X = SensorDigiPinsOutputLevel (S1);

3.2.3 I0Map Offsets

Input Module Offsets Value Siz
InputOffsetCustomZeroOffset(p) (((p)*20)+0) 2
InputOffsetADRaw(p) (((p)*20)+2) 2
InputOffsetSensorRaw(p) (((p)*20)+4) 2
InputOffsetSensorValue(p) (((p)*20)+6) 2
InputOffsetSensorType(p) (((p)*20)+8) 1
InputOffsetSensorMode(p) (((p)*20)+9) 1
InputOffsetSensorBoolean(p) (((p)*20)+10) 1
InputOffsetDigiPinsDir(p) (((p)*20)+11) 1
InputOffsetDigiPinsin(p) (((p)*20)+12) 1
InputOffsetDigiPinsOut(p) (((p)*20)+13) 1
InputOffsetCustomPctFullScale(p) (((p)*20)+14) 1
InputOffsetCustomActiveStatus(p) (((p)*20)+15) 1
InputOffsetinvalidData(p) (((p)*20)+16) 1
InputOffsetSpareOne(p) (((p)*20)+17) 1
InputOffsetSpareTwo(p) (((p)*20)+18) 1
InputOffsetSpareThree(p) (((p)*20)+19) 1

Table 12. Input Module IOMap Offsets

3.3 Output Module

The NXT output module encompasses all the motor outputs.

Module Constants | Value
OutputModuleName "Output.mod"
OutputModulelD 0x00020001

Table 13. Output Module Constants

Nearly all of the NXC API functions dealing with outputs take either a single output or a
set of outputs as their first argument. Depending on the function call, the output or set of
outputs may be a constant or a variable containing an appropriate output port value. The
constants OUT_A, OUT_B, and OUT_C are used to identify the three outputs. Unlike NQC,
adding individual outputs together does not combine multiple outputs. Instead, the NXC
API provides predefined combinations of outputs: OUT_AB, OUT_AC, OUT_BC, and
OUT_ABC. Manually combining outputs involves creating an array and adding two or
more of the three individual output constants to the array.

Power levels can range 0 (lowest) to 100 (highest). Negative power levels reverse the
direction of rotation (i.e., forward at a power level of -100 actually means reverse at a
power level of 100).

Page 30

NXC Programmer's Guide

The outputs each have several fields that define the current state of the output port. These
fields are defined in the table below.

Field Constant | Type | Access | Range | Meaning

UpdateFlags ubyte | Read/ 0, 255 This field can include any combination of the flag bits
Write described in Table 15.

Use UF_UPDATE_MODE, UF_UPDATE_SPEED,
UF_UPDATE_TACHO_LIMIT, and
UF_UPDATE_PID_VALUES along with other fields to
commit changes to the state of outputs. Set the appropriate
flags after setting one or more of the output fields in order for
the changes to actually go into affect.

OutputMode ubyte | Read/ 0, 255 This is a bitfield that can include any of the values listed in
Write Table 16.

The OUT_MODE_MOTORON bit must be set in order for
power to be applied to the motors. Add OUT_MODE_BRAKE
to enable electronic braking. Braking means that the output
voltage is not allowed to float between active PWM pulses. It
improves the accuracy of motor output but uses more battery
power.

To use motor regulation include OUT_MODE_REGULATED
in the OutputMode value. Use UF_UPDATE_MODE with
UpdateFlags to commit changes to this field.

Power sbyte | Read/ -100, Specify the power level of the output. The absolute value of
Write 100 Power is a percentage of the full power of the motor. The sign
of Power controls the rotation direction. Positive values tell the
firmware to turn the motor forward, while negative values turn
the motor backward. Use UF_UPDATE_POWER with
UpdateFlags to commit changes to this field.

ActualSpeed sbyte | Read -100, Return the percent of full power the firmware is applying to the
100 output. This may vary from the Power value when auto-
regulation code in the firmware responds to a load on the
output.
TachoCount slong | Read full Return the internal position counter value for the specified

range of | output. The internal count is reset automatically when a new
signed goal is set using the TachoLimit and the
long UF_UPDATE_TACHO_LIMIT flag.

Set the UF_UPDATE_RESET_COUNT flag in UpdateFlags to
reset TachoCount and cancel any TachoLimit.

The sign of TachoCount indicates the motor rotation direction.

TachoLimit ulong | Read/ full Specify the number of degrees the motor should rotate.
Write range of | Use UF_UPDATE_TACHO_LIMIT with the UpdateFlags
unsigned | field to commit changes to the TachoLimit.

long The value of this field is a relative distance from the current
motor position at the moment when the
UF UPDATE_TACHO_LIMIT flag is processed.
RunState ubyte | Read/ 0..255 Use this field to specify the running state of an output. Set the
Write RunState to OUT_RUNSTATE_RUNNING to enable power

to any output. Use OUT_RUNSTATE_RAMPUP to enable
automatic ramping to a new Power level greater than the
current Power level. Use OUT_RUNSTATE_RAMPDOWN to
enable automatic ramping to a new Power level less than the

Page 31

NXC Programmer's Guide

current Power level.

Both the rampup and rampdown bits must be used in
conjunction with appropriate TachoLimit and Power values. In
this case the firmware smoothly increases or decreases the
actual power to the new Power level over the total number of
degrees of rotation specified in TachoLimit.

TurnRatio

sbyte

Read/
Write

-100,
100

Use this field to specify a proportional turning ratio. This field
must be used in conjunction with other field values:
OutputMode must include OUT_MODE_MOTORON and
OUT_MODE_REGULATED, RegMode must be set to
OUT_REGMODE_SYNC, RunState must not be
OUT_RUNSTATE_IDLE, and Speed must be non-zero.

There are only three valid combinations of left and right
motors for use with TurnRatio: OUT_AB, OUT_BC, and
OUT _AC. In each of these three options the first motor listed
is considered to be the left motor and the second motor is the
right motor, regardless of the physical configuration of the
robot.

Negative TurnRatio values shift power toward the left motor
while positive values shift power toward the right motor. An
absolute value of 50 usually results in one motor stopping. An
absolute value of 100 usually results in two mators turning in
opposite directions at equal power.

RegMode

ubyte

Read/
Write

0..255

This field specifies the regulation mode to use with the
specified port(s). It is ignored if the
OUT_MODE_REGULATED bit is not set in the OutputMode
field. Unlike the OutputMode field, RegMode is not a bitfield.
Only one RegMode value can be set at a time. Valid RegMode
values are listed in Table 18.

Speed regulation means that the firmware tries to maintain a
certain speed based on the Power setting. The firmware adjusts
the PWM duty cycle if the motor is affected by a physical load.
This adjustment is reflected by the value of the ActualSpeed
property. When using speed regulation, do not set Power to its
maximum value since the firmware cannot adjust to higher
power levels in that situation.

Synchronization means the firmware tries to keep two motors
in synch regardless of physical loads. Use this mode to
maintain a straight path for a mobile robot automatically. Also
use this mode with the TurnRatio property to provide
proportional turning.

Set OUT_REGMODE_SYNC on at least two motor ports in
order for synchronization to function. Setting
OUT_REGMODE_SYNC on all three motor ports will result
in only the first two (OUT_A and OUT_B) being
synchronized.

Overload

ubyte

Read

0.1

This field will have a value of 1 (true) if the firmware speed
regulation cannot overcome a physical load on the motor. In
other words, the motor is turning more slowly than expected.
If the motor speed can be maintained in spite of loading then
this field value is zero (false).

In order to use this field the motor must have a non-idle
RunState, an OutputMode which includes

Page 32

NXC Programmer's Guide

OUT_MODE_MOTORON and OUT_MODE_REGULATED,
and its RegMode must be set to OUT_REGMODE_SPEED.

RegPValue

ubyte

Read/
Write

0..255

This field specifies the proportional term used in the internal
proportional-integral-derivative (P1D) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, ReglValue, and RegDValue simultaneously.

ReglValue

ubyte

Read/
Write

0..255

This field specifies the integral term used in the internal
proportional-integral-derivative (P1D) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, ReglValue, and RegDValue simultaneously.

RegDValue

ubyte

Read/
Write

0..255

This field specifies the derivative term used in the internal
proportional-integral-derivative (P1D) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, ReglValue, and RegDValue simultaneously.

BlockTachoCount

slong

Read

full
range of
signed
long

Return the block-relative position counter value for the
specified port.

Refer to the UpdateFlags description for information about
how to use block-relative position counts.

Set the UF_UPDATE_RESET_BLOCK_COUNT flag in
UpdateFlags to request that the firmware reset the
BlockTachoCount.

The sign of BlockTachoCount indicates the direction of
rotation. Positive values indicate forward rotation and negative
values indicate reverse rotation. Forward and reverse depend
on the orientation of the motor.

RotationCount

slong

Read

full
range of
signed
long

Return the program-relative position counter value for the
specified port.

Refer to the UpdateFlags description for information about
how to use program-relative position counts.

Set the UF_UPDATE_RESET_ROTATION_COUNT flag in
UpdateFlags to request that the firmware reset the
RotationCount.

The sign of RotationCount indicates the direction of rotation.
Positive values indicate forward rotation and negative values
indicate reverse rotation. Forward and reverse depend on the
orientation of the motor.

Table 14. Output Field Constants

Valid UpdateFlags values are described in the following table.

UpdateFlags Constants

Meaning

UF_UPDATE_MODE

Commits changes to the OutputMode output property

UF_UPDATE_SPEED

Commits changes to the Power output property

UF_UPDATE_TACHO _LIMIT

Commits changes to the TachoLimit output property

UF_UPDATE_RESET_COUNT

Resets all rotation counters, cancels the current goal, and resets the
rotation error-correction system

UF_UPDATE_PID_VALUES

Commits changes to the PID motor regulation properties

UF_UPDATE_RESET BLOCK_COUNT

Resets the block-relative rotation counter

UF_UPDATE_RESET_ROTATION_COUNT

Resets the program-relative rotation counter

Table 15. UpdateFlag Constants

Page 33

NXC Programmer's Guide

Valid OutputMode values are described in the following table.

OutputMode Constants

Value Meaning

OUT_MODE_COAST

0x00

No power and no braking so motors rotate freely

OUT_MODE_MOTORON 0x01 Enables PWM power to the outputs given the Power setting
OUT_MODE_BRAKE 0x02 Uses electronic braking to outputs
OUT_MODE_REGULATED | 0x04 Enables active power regulation using the RegMode value
OUT_MODE_REGMETHOD | 0xf0

Table 16. OutputMode Constants

Valid RunState values are described in the following table.

RunState Constants Value Meaning

OUT_RUNSTATE_IDLE 0x00 Disable all power to motors.

OUT_RUNSTATE_RAMPUP 0x10 Enable ramping up from a current Power to a new (higher)
Power over a specified TachoLimit goal.

OUT_RUNSTATE_RUNNING 0x20 Enable power to motors at the specified Power level.

OUT_RUNSTATE_RAMPDOWN | 0x40 Enable ramping down from a current Power to a new (lower)
Power over a specified TachoLimit goal.

Table 17. RunState Constants

Valid RegMode values are described in the following table.

RegMode Constants Value Meaning

OUT_REGMODE_IDLE 0x00 No regulation
OUT_REGMODE_SPEED 0x01 Regulate a motor's speed (Power)
OUT_REGMODE_SYNC 0x02 Synchronize the rotation of two motors

Table 18. RegMode Constants

3.3.1 Convenience Calls

Since control of outputs is such a common feature of programs, a number of convenience
functions are provided that make it easy to work with the outputs. It should be noted that
most of these commands do not provide any new functionality above lower level calls
described in the following section. They are merely convenient ways to make programs

more concise.

The Ex versions of the motor functions use special reset constants. They are defined in
the following table. The Var versions of the motor functions require that the outputs
argument be a variable while the non-Var versions require that the outputs argument be a

constant.

Reset Constants Value
RESET_NONE 0x00
RESET _COUNT 0x08
RESET BLOCK_COUNT 0x20
RESET _ROTATION _COUNT | 0x40
RESET_BLOCKANDTACHO | 0x28
RESET ALL 0x68

Table 19. Reset Constants

Page 34

NXC Programmer's Guide

Output Port Constants Value
OUT_A 0x00
OUT B 0x01
OUT C 0x02
OUT_AB 0x03
OUT_AC 0x04
OUT_BC 0x05
OUT_ABC 0x06

Table 20. Output Port Constants

Off(outputs) Function

Turn the specified outputs off (with braking). Outputs can be a constant or a variable
containing the desired output ports. Predefined output port constants are defined in
Table 20.

OFF(OUT_A); // turn off output A

OffEx(outputs, const reset) Function

Turn the specified outputs off (with braking). Outputs can be a constant or a variable
containing the desired output ports. Predefined output port constants are defined in
Table 20. The reset parameter controls whether any of the three position counters are
reset. It must be a constant. Valid reset values are listed in Table 19.

OFFEX(OUT_A, RESET NONE); // turn off output A

Coast(outputs) Function

Turn off the specified outputs, making them coast to a stop. Outputs can be a constant
or a variable containing the desired output ports. Predefined output port constants are
defined in Table 20.

Coast(OUT_A); // coast output A

CoastEx(outputs, const reset) Function

Turn off the specified outputs, making them coast to a stop. Outputs can be a constant
or a variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The reset parameter controls whether any of the three position
counters are reset. It must be a constant. Valid reset values are listed in Table 19.

CoastEx(OUT_A, RESET NONE); // coast output A

Float(outputs) Function

Make outputs float. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20. Float is an
alias for Coast.

Float(OUT_A); // float output A

Page 35

NXC Programmer's Guide

OnFwd(outputs, pwr) Function

Set outputs to forward direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20.

OnFwd(OUT_A, 75);

OnFwdEx(outputs, pwr, const reset) Function

Set outputs to forward direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The reset parameter controls whether any of the three position
counters are reset. It must be a constant. Valid reset values are listed in Table 19.

ONFWdEX(OUT_A, 75, RESET _NONE);

OnRev(outputs, pwr) Function

Set outputs to reverse direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20.

OnRev(OUT_A, 75);

OnRevEXx(outputs, pwr, const reset) Function

Set outputs to reverse direction and turn them on. Outputs can be a constant or a
variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The reset parameter controls whether any of the three position
counters are reset. It must be a constant. VValid reset values are listed in Table 19.

OnReVvEX(OUT_A, 75, RESET_NONE);

OnFwdReg(outputs, pwr, regmode) Function

Run the specified outputs forward using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18.

OnFwdReg(OUT_A, 75, OUT_REGMODE_SPEED); // regulate speed

OnFwdRegEXx(outputs, pwr, regmode, const reset) Function

Run the specified outputs forward using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18. The
reset parameter controls whether any of the three position counters are reset. It must
be a constant. Valid reset values are listed in Table 19.

OnFwdRegExX(OUT_A, 75, OUT_REGMODE_SPEED, RESET_NONE);

Page 36

NXC Programmer's Guide

OnRevReg(outputs, pwr, regmode) Function

Run the specified outputs in reverse using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18.

OnRevReg(OUT_A, 75, OUT_REGMODE SPEED); // regulate speed

OnRevRegEXx(outputs, pwr, regmode, const reset) Function

Run the specified outputs in reverse using the specified regulation mode. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Valid regulation modes are listed in Table 18. The
reset parameter controls whether any of the three position counters are reset. It must
be a constant. Valid reset values are listed in Table 19.

OnRevRegEX(OUT_A, 75, OUT_REGMODE_SPEED, RESET_NONE);

OnFwdSync(outputs, pwr, turnpct) Function

Run the specified outputs forward with regulated synchronization using the specified
turn ratio. Outputs can be a constant or a variable containing the desired output ports.
Predefined output port constants are defined in Table 20.

OnFwdSync(OUT_AB, 75, -100); // spin right

OnFwdSyncEx(outputs, pwr, turnpct, const reset) Function

Run the specified outputs forward with regulated synchronization using the specified

turn ratio. Outputs can be a constant or a variable containing the desired output ports.

Predefined output port constants are defined in Table 20. The reset parameter controls
whether any of the three position counters are reset. It must be a constant. Valid reset

values are listed in Table 19.

OnFwdSyncEx(OUT_AB, 75, O, RESET_NONE);

OnRevSync(outputs, pwr, turnpct) Function

Run the specified outputs in reverse with regulated synchronization using the
specified turn ratio. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20.

OnRevSync(OUT_AB, 75, -100); // spin left

OnRevSyncEx(outputs, pwr, turnpct, const reset) Function

Run the specified outputs in reverse with regulated synchronization using the
specified turn ratio. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20. The reset
parameter controls whether any of the three position counters are reset. It must be a
constant. Valid reset values are listed in Table 19.

OnRevSyncEx(OUT_AB, 75, -100, RESET_NONE); // spin left

Page 37

NXC Programmer's Guide

RotateMotor(outputs, pwr, angle) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20.

RotateMotor(OUT_A, 75, 45); // forward 45 degrees
RotateMotor(OUT_A, -75, 45); // reverse 45 degrees

RotateMotorPID(outputs, pwr, angle, p, i, d) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. Also specify the proportional, integral, and
derivative factors used by the firmware's PID motor control algorithm.

RotateMotorPID(OUT_A, 75, 45, 20, 40, 100);

RotateMotorEx(outputs, pwr, angle, turnpct, sync, stop) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. If a non-zero turn percent is specified then sync
must be set to true or no turning will occur. Specify whether the motor(s) should
brake at the end of the rotation using the stop parameter.

RotateMotorEx(OUT_AB, 75, 360, 50, true, true);

RotateMotorExPID(outputs, pwr, angle, turnpct, sync, stop, p, i, d)Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20. If a non-zero turn percent is specified then sync
must be set to true or no turning will occur. Specify whether the motor(s) should
brake at the end of the rotation using the stop parameter. Also specify the
proportional, integral, and derivative factors used by the firmware's PID motor
control algorithm.

RotateMotorExPID(OUT_AB, 75, 360, 50, true, true, 30, 50,
90);

ResetTachoCount(outputs) Function

Reset the tachometer count and tachometer limit goal for the specified outputs.
Outputs can be a constant or a variable containing the desired output ports. Predefined
output port constants are defined in Table 20.

ResetTachoCount(OUT_AB);

Page 38

NXC Programmer's Guide

ResetBlockTachoCount(outputs) Function

Reset the block-relative position counter for the specified outputs. Outputs can be a
constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20.

ResetBlockTachoCount(OUT_AB);

ResetRotationCount(outputs) Function

Reset the program-relative position counter for the specified outputs. Outputs can be
a constant or a variable containing the desired output ports. Predefined output port
constants are defined in Table 20.

ResetRotationCount(OUT_AB);

ResetAllTachoCounts(outputs) Function

Reset all three position counters and reset the current tachometer limit goal for the
specified outputs. Outputs can be a constant or a variable containing the desired
output ports. Predefined output port constants are defined in Table 20.

ResetAl ITachoCounts(OUT_AB);

3.3.2 Primitive Calls

SetOutput(outputs, const fieldl, vall, ..., const fieldN, valN) Function

Set the specified field of the outputs to the value provided. Outputs can be a constant
or a variable containing the desired output ports. Predefined output port constants are
defined in Table 20. The field must be a valid output field constant. This function
takes a variable number of field/value pairs.

SetOutput(OUT_AB, TachoLimit, 720); // set tacho limit
The output field constants are described in Table 14.

GetOutput(output, const field) Value

Get the value of the specified field for the specified output. Output can be OUT_A,
OUT_B, OUT_C, or a variable containing one of these values. The field must be a valid
output field constant.

X = GetOutput(OUT_A, TachoLimit);
The output field constants are described in Table 14.

MotorMode(output) Value

Get the mode of the specified output. Output can be OUT_A, OUT_B, OUT_C, or a
variable containing one of these values.

X = MotorMode(OUT_A);

Page 39

NXC Programmer's Guide

MotorPower(output) Value

Get the power level of the specified output. Output can be OUT_A, OUT_B, OUT_C, or
a variable containing one of these values.

X = MotorPower(OUT_A);

MotorActualSpeed(output) Value

Get the actual speed value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorActualSpeed(OUT_A);

MotorTachoCount(output) Value

Get the tachometer count value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorTachoCount(OUT_A);

MotorTachoLimit(output) Value

Get the tachometer limit value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorTachoLimit(OUT_A);

MotorRunState(output) Value

Get the RunState value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

X = MotorRunState(OUT_A);

MotorTurnRatio(output) Value

Get the turn ratio value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

X = MotorTurnRatio(OUT_A);

MotorRegulation(output) Value

Get the regulation value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorRegulation(OUT_A);

MotorOverload(output) Value

Get the overload value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

X = MotorOverload(OUT_A);

Page 40

NXC Programmer's Guide

MotorRegPValue(output) Value

Get the proportional PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorRegPValue(OUT_A);

MotorReglValue(output) Value

Get the integral PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorReglValue(OUT_A);

MotorRegDValue(output) Value

Get the derivative PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorRegDValue(OUT_A);

MotorBlockTachoCount(output) Value

Get the block-relative position counter value of the specified output. Output can be
OUT_A, OUT_B, OUT_C, or a variable containing one of these values.

X = MotorBlockTachoCount(OUT_A);

MotorRotationCount(output) Value

Get the program-relative position counter value of the specified output. Output can be
OUT_A, OUT_B, OUT_C, or a variable containing one of these values.

X = MotorRotationCount(OUT_A);

MotorPwnFreq() Value

Get the current motor pulse width modulation frequency.
X = MotorPwnFreq();

SetMotorPwnFreq(val) Function

Set the current motor pulse width modulation frequency.
SetMotorPwnFreq(x);

3.3.3 I0Map Offsets

Output Module Offsets Value Size
OutputOffsetTachoCount(p) (((p)*32)+0) 4
OutputOffsetBlockTachoCount(p) (((p)*32)+4) 4
OutputOffsetRotationCount(p) (((p)*32)+8) 4
OutputOffsetTachoLimit(p) (((p)*32)+12) 4
OutputOffsetMotorRPM(p) (((p)*32)+16) 2

Page 41

NXC Programmer's Guide

OutputOffsetFlags(p) (((p)*32)+18) 1
OutputOffsetMode(p) (((p)*32)+19) 1
OutputOffsetSpeed(p) (((p)*32)+20) 1
OutputOffsetActualSpeed(p) (((p)*32)+21) 1
OutputOffsetRegPParameter(p) (((p)*32)+22) 1
OutputOffsetReglParameter(p) (((p)*32)+23) 1
OutputOffsetRegDParameter(p) (((p)*32)+24) 1
OutputOffsetRunState(p) (((p)*32)+25) 1
OutputOffsetRegMode(p) (((p)*32)+26) 1
OutputOffsetOverloaded(p) (((p)*32)+27) 1
OutputOffsetSyncTurnParameter(p) (((p)*32)+28) 1
OutputOffsetPwnFreq 96 1

Table 21. Output Module IOMap Offsets

3.4

IO Map Addresses

The NXT firmware provides a mechanism for reading and writing input (sensor) and
output (motor) field values using low-level constants known as 10 Map Addresses
(IOMA). Valid IOMA constants are listed in the following table.

IOMA Constant Parameter Meaning

InputlOType(p) S1..54 Input Type value
InputlOlInputMode(p) S1..54 Input InputMode value
InputlORawValue(p) S1..54 Input RawValue value
InputlONormalizedValue(p) S1..54 Input NormalizedValue value
InputlOScaledValue(p) S1..54 Input ScaledValue value
InputlOlnvalidData(p) S1..54 Input InvalidData value
OutputlOUpdateFlags(p) OUT_A..OUT _C | Output UpdateFlags value
OutputlOOutputMode(p) OUT_A..OUT_C | Output OutputMode value
OutputlOPower(p) OUT_A..OUT_C | Output Power value
OutputlOActualSpeed(p) OUT_A..OUT_C | Output ActualSpeed value
OutputlOTachoCount(p) OUT_A..OUT_C | Output TachoCount value
OutputlOTachoLimit(p) OUT_A..OUT_C | Output TachoLimit value
OutputlORunState(p) OUT_A..OUT_C | Output RunState value
OutputlOTurnRatio(p) OUT_A..OUT_C | Output TurnRatio value
OutputlORegMode(p) OUT_A..OUT_C | Output RegMode value
OutputlOOverload(p) OUT_A..OUT_C | Output Overload value
OutputlORegPValue(p) OUT_A..OUT _C | Output RegPValue value
OutputlOReglValue(p) OUT_A..OUT_C | Output ReglValue value
OutputlORegDValue(p) OUT_A..OUT_C | Output RegDValue value
OutputlOBlockTachoCount(p) OUT_A..OUT_C | Output BlockTachoCount value
OutputlORotationCount(p) OUT_A..OUT_C | Output RotationCount value

IOMA(const n)

Table 22. IOMA Constants

Value

Get the specified 10 Map Address value. Valid IO Map Address constants are listed

in Table 22.

X = IOMA(InputlORawvalue(S3));

Page 42

NXC Programmer's Guide

SetlOMA(const n, val) Function

Set the specified 10 Map Address to the value provided. Valid IO Map Address
constants are listed in Table 22. The value must be a specified via a constant, a
constant expression, or a variable.

SetIOMA(OutputlOPower (OUT_A), X);

3.5 Sound Module

The NXT sound module encompasses all sound output features. The NXT provides
support for playing basic tones as well as two different types of files.

Module Constants | Value
SoundModuleName "Sound.mod"
SoundModulelD 0x00080001

Table 23. Sound Module Constants

Sound files (.rso) are like .wav files. They contain thousands of sound samples that
digitally represent an analog waveform. With sounds files the NXT can speak or play
music or make just about any sound imaginable.

Melody files are like MIDI files. They contain multiple tones with each tone being
defined by a frequency and duration pair. When played on the NXT a melody file sounds
like a pure sine-wave tone generator playing back a series of notes. While not as fancy as
sound files, melody files are usually much smaller than sound files.

When a sound or a file is played on the NXT, execution of the program does not wait for
the previous playback to complete. To play multiple tones or files sequentially it is
necessary to wait for the previous tone or file playback to complete first. This can be
done via the Wait API function or by using the sound state value within a while loop.

The NXC API defines frequency and duration constants which may be used in calls to
PlayTone or PlayToneEx. Frequency constants start with TONE_A3 (the 'A’ pitch in
octave 3) and go to TONE_B7 (the 'B' pitch in octave 7). Duration constants start with
MS_1 (1 millisecond) and go up to MIN_1 (60000 milliseconds) with several constants in
between. See NBCCommon.h for the complete list.

3.5.1 High-level functions

PlayTone(frequency, duration) Function

Play a single tone of the specified frequency and duration. The frequency is in Hz.
The duration is in 1000ths of a second. All parameters may be any valid expression.

PlayTone(440, 500); // Play "A" for one half second

Page 43

NXC Programmer's Guide

PlayToneEx(frequency, duration, volume, bL.oop) Function

Play a single tone of the specified frequency, duration, and volume. The frequency is
in Hz. The duration is in 1000ths of a second. Volume should be a number from 0
(silent) to 4 (loudest). All parameters may be any valid expression.

PlayToneEx(440, 500, 2, false);

PlayFile(filename) Function

Play the specified sound file (.rso) or a melody file (.rmd). The filename may be any
valid string expression.

PlayFile(*'startup.rso'™);

PlayFileEx(filename, volume, bLoop) Function

Play the specified sound file (.rso) or a melody file (.rmd). The filename may be any
valid string expression. Volume should be a number from 0 (silent) to 4 (loudest).
bLoop is a boolean value indicating whether to repeatedly play the file.

PlayFileEx('startup.rso', 3, true);

3.5.2 Low-level functions
Valid sound flags constants are listed in the following table.

Sound Flags Constants Read/Write | Meaning
SOUND_FLAGS IDLE Read Sound is idle
SOUND_FLAGS UPDATE Write Make changes take effect
SOUND_FLAGS RUNNING | Read Processing a tone or file

Table 24. Sound Flags Constants
Valid sound state constants are listed in the following table.

Sound State Constants | Read/Write | Meaning

SOUND_STATE_IDLE Read Idle, ready for start sound
SOUND_STATE_FILE Read Processing file of sound/melody data
SOUND_STATE_TONE Read Processing play tone request
SOUND_STATE_STOP Write Stop sound immediately and close hardware

Table 25. Sound State Constants
Valid sound mode constants are listed in the following table.

Sound Mode Constants | Read/Write | Meaning

SOUND_MODE_ONCE Read Only play file once

SOUND_MODE_LOOP Read Play file until writing
SOUND_STATE_STOP into State.

SOUND_MODE_TONE Read Play tone specified in Frequency for
Duration milliseconds.

Table 26. Sound Mode Constants

Page 44

NXC Programmer's Guide

Miscellaneous sound constants are listed in the following table.

Misc. Sound Constants | Value Meaning

FREQUENCY_MIN 220 Minimum frequency in Hz.
FREQUENCY_MAX 14080 Maximum frequency in Hz.
SAMPLERATE_MIN 2000 Minimum sample rate supported by NXT
SAMPLERATE_DEFAULT | 8000 Default sample rate
SAMPLERATE_MAX 16000 Maximum sample rate supported by NXT

Table 27. Miscellaneous Sound Constants

SoundFlags() Value

Return the current sound flags. Valid sound flags values are listed in Table 24.
x = SoundFlags(Q);

SetSoundFlags(n) Function
Set the current sound flags. Valid sound flags values are listed in Table 24.
SetSoundFlags(SOUND_FLAGS UPDATE);

SoundState() Value

Return the current sound state. Valid sound state values are listed in Table 25.
X = SoundState();

SetSoundState(n) Function

Set the current sound state. VValid sound state values are listed in Table 25.
SetSoundState(SOUND_STATE_STOP);

SoundMode() Value

Return the current sound mode. Valid sound mode values are listed in Table 26.
X = SoundMode();

SetSoundMode(n) Function

Set the current sound mode. Valid sound mode values are listed in Table 26.
SetSoundMode (SOUND_MODE_ONCE);

SoundFrequency() Value

Return the current sound frequency.
x = SoundFrequency();

SetSoundFrequency(n) Function

Set the current sound frequency.
SetSoundFrequency(440);

Page 45

NXC Programmer's Guide

SoundDuration()

Return the current sound duration.
X = SoundDuration();

SetSoundDuration(n)
Set the current sound duration.
SetSoundDuration(500) ;

SoundSampleRate()

Return the current sound sample rate.
X = SoundSampleRate();

SetSoundSampleRate(n)

Set the current sound sample rate.
SetSoundSampleRate(4000);

SoundVolume()

Return the current sound volume.
X = SoundVolume();

SetSoundVolume(n)
Set the current sound volume.
SetSoundVolume(3);

StopSound()
Stop playback of the current tone or file.
StopSound();

3.5.3 I0Map Offsets

Sound Module Offsets | Value | Siz
SoundOffsetFreq 0 2
SoundOffsetDuration 2 2
SoundOffsetSampleRate 4 2
SoundOffsetSoundFilename 6 20
SoundOffsetFlags 26 1
SoundOffsetState 27 1
SoundOffsetMode 28 1
SoundOffsetVolume 29 1

Table 28. Sound Module IOMap Offsets

Value

Function

Value

Function

Value

Function

Function

Page 46

NXC Programmer's Guide

3.6 10Ctrl Module

The NXT ioctrl module encompasses low-level communication between the two
processors that control the NXT. The NXC API exposes two functions that are part of
this module.

Module Constants | Value
10CtrIModuleName "1OCtrl.mod"
I0CtrIModulelD 0x00060001

Table 29. IOCtrl Module Constants

PowerDown() Function
Turn off the NXT immediately.
PowerDown() ;
RebootInFirmwareMode() Function

Reboot the NXT in SAMBA or firmware download mode. This function is not likely
to be used in a normal NXC program.

RebootInFirmwareMode();

3.6.1 I0Map Offsets

IOCtrl Module Offsets Value | Size
10CtrlOffsetPowerOn 0 2

Table 30. IOCtrl Module IOMap Offsets

3.7 Display module

The NXT display module encompasses support for drawing to the NXT LCD. The NXT
supports drawing points, lines, rectangles, and circles on the LCD. It supports drawing
graphic icon files on the screen as well as text and numbers.

Module Constants | Value
DisplayModuleName "Display.mod"
DisplayModulelD 0x000A0001

Table 31. Display Module Constants

The LCD screen has its origin (0, 0) at the bottom left-hand corner of the screen with the
positive Y-axis extending upward and the positive X-axis extending toward the right. The
NXC API provides constants for use in the NumOut and TextOut functions which make
it possible to specify LCD line numbers between 1 and 8 with line 1 being at the top of
the screen and line 8 being at the bottom of the screen. These constants (LCD_LINE1,
LCD_LINEZ2, LCD_LINE3, LCD_LINE4, LCD_LINES5, LCD_LINE6, LCD_LINE7,
LCD_LINEB8) should be used as the Y coordinate in NumOut and TextOut calls. Values of
Y other than these constants will be adjusted so that text and numbers are on one of 8
fixed line positions.

Page 47

NXC Programmer's Guide

3.7.1 High-level functions

NumOut(x, y, value, clear = false) Function

Draw a numeric value on the screen at the specified x and y location. Optionally clear
the screen first depending on the boolean value of the optional "clear” argument. If
this argument is not specified it defaults to false.

NumOut(O, LCD _LINE1l, Xx);

TextOut(x, y, msg, clear = false) Function

Draw a text value on the screen at the specified x and y location. Optionally clear the
screen first depending on the boolean value of the optional "clear” argument. If this
argument is not specified it defaults to false.

TextOut(O, LCD_LINE3, ""Hello World!'");

GraphicOut(x, y, filename, clear = false) Function

Draw the specified graphic icon file on the screen at the specified x and y location.
Optionally clear the screen first depending on the boolean value of the optional
"clear" argument. If this argument is not specified it defaults to false. If the file
cannot be found then nothing will be drawn and no errors will be reported.

GraphicOut(40, 40, "image.ric');

GraphicOutEx(x, y, filename, vars, clear = false) Function

Draw the specified graphic icon file on the screen at the specified x and y location.
Use the values contained in the vars array to transform the drawing commands
contained within the specified icon file. Optionally clear the screen first depending on
the boolean value of the optional "clear” argument. If this argument is not specified it
defaults to false. If the file cannot be found then nothing will be drawn and no errors
will be reported.

GraphicOutEx(40, 40, "image.ric', variables);

CircleOut(x, y, radius, clear = false) Function

Draw a circle on the screen with its center at the specified x and y location, using the
specified radius. Optionally clear the screen first depending on the boolean value of
the optional "clear" argument. If this argument is not specified it defaults to false.

CircleOut(40, 40, 10);

LineOut(x1, y1, x2, y2, clear = false) Function

Draw a line on the screen from x1, y1 to x2, y2. Optionally clear the screen first
depending on the boolean value of the optional "clear" argument. If this argument is
not specified it defaults to false.

LineOut(40, 40, 10, 10);

Page 48

NXC Programmer's Guide

PointOut(x, y, clear = false) Function

Draw a point on the screen at x, y. Optionally clear the screen first depending on the
boolean value of the optional "clear" argument. If this argument is not specified it
defaults to false.

PointOut(40, 40);

RectOut(x, y, width, height, clear = false) Function

Draw a rectangle on the screen at X, y with the specified width and height. Optionally
clear the screen first depending on the boolean value of the optional "clear" argument.
If this argument is not specified it defaults to false.

RectOut(40, 40, 30, 10);

ResetScreen() Function

Restore the standard NXT running program screen.
ResetScreen();

ClearScreen() Function

Clear the NXT LCD to a blank screen.
ClearScreen();

3.7.2 Low-level functions
Valid display flag values are listed in the following table.

Display Flags Constant Read/Write | Meaning

DISPLAY ON Write Display is on

DISPLAY REFRESH Write Enable refresh

DISPLAY_ POPUP Write Use popup display memory
DISPLAY REFRESH DISABLED | Read Refresh is disabled
DISPLAY_BUSY Read Refresh is in progress

Table 32. Display Flags Constants

DisplayFlags() Value
Return the current display flags. Valid flag values are listed in Table 32.
x = DisplayFlagsQ);

SetDisplayFlags(n) Function
Set the current display flags. Valid flag values are listed in Table 32.
SetDisplayFlags(x);
DisplayEraseMask() Value

Return the current display erase mask.

Page 49

NXC Programmer's Guide

x = DisplayEraseMask();

SetDisplayEraseMask(n)
Set the current display erase mask.
SetDisplayEraseMask(X);

DisplayUpdateMask()

Return the current display update mask.
x = DisplayUpdateMask();

SetDisplayUpdateMask(n)
Set the current display update mask.
SetDisplayUpdateMask(X);

DisplayDisplay()
Return the current display memory address.
x = DisplayDisplay();

SetDisplayDisplay(n)
Set the current display memory address.
SetDisplayDisplay(X);

DisplayTextLinesCenterFlags()

Return the current display text lines center flags.
x = DisplayTextLinesCenterFlags();

SetDisplayTextLinesCenterFlags(n)
Set the current display text lines center flags.
SetDisplayTextLinesCenterFlags(X);

GetDisplayNormal(x, line, count, data)

Function

Value

Function

Value

Function

Value

Function

Function

Read "count™ bytes from the normal display memory into the data array. Start reading
from the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES for the "line" parameter.

GetDisplayNormal (O, TEXTLINE 1, 8, ScreenMem);

SetDisplayNormal(x, line, count, data)

Function

Write "count" bytes to the normal display memory from the data array. Start writing
at the specified x, line coordinate. Each byte of data read from screen memory is a

Page 50

NXC Programmer's Guide

vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES8 for the "line" parameter.

SetDisplayNormal (O, TEXTLINE 1, 8, ScreenMem);

GetDisplayPopup(x, line, count, data) Function

Read "count™ bytes from the popup display memory into the data array. Start reading
from the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES8 for the "line" parameter.

GetDisplayPopup(0, TEXTLINE_1, 8, PopupMem);

SetDisplayPopup(x, line, count, data) Function

Write "count” bytes to the popup display memory from the data array. Start writing at
the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES8 for the "line" parameter.

SetDisplayPopup(0, TEXTLINE_1, 8, PopupMem);

3.7.3 10Map Offsets

Display Module Offsets Value Size
DisplayOffsetPFunc 0 4
DisplayOffsetEraseMask 4 4
DisplayOffsetUpdateMask 8 4
DisplayOffsetPFont 12 4
DisplayOffsetPTextLines(p) (((p)*4)+16) 4*8
DisplayOffsetP StatusText 48 4
DisplayOffsetP Statuslcons 52 4
DisplayOffsetPScreens(p) (((p)*4)+56) 4*3
DisplayOffsetPBitmaps(p) (((p)*4)+68) 4*4
DisplayOffsetPMenuText 84 4
DisplayOffsetPMenulcons(p) (((p)*4)+88) 4*3
DisplayOffsetPSteplcons 100 4
DisplayOffsetDisplay 104 4
DisplayOffsetStatuslcons(p) ((p)+108) 1*4
DisplayOffsetSteplcons(p) ((p)+112) 1*5
DisplayOffsetFlags 117 1
DisplayOffsetTextLinesCenterFlags 118 1
DisplayOffsetNormal(l,w) (((N*100)+(w)+119) 800
DisplayOffsetPopup(l,w) (((N*100)+(w)+919) 800

Table 33. Display Module I0Map Offsets

3.8 Loader Module

The NXT loader module encompasses support for the NXT file system. The NXT
supports creating files, opening existing files, reading, writing, renaming, and deleting
files.

Page 51

NXC Programmer's Guide

Module Constants | Value

LoaderModuleName "Loader.mod"

LoaderModulelD 0x00090001

Table 34. Loader Module Constants

Files in the NXT file system must adhere to the 15.3 naming convention for a maximum
filename length of 19 characters. While multiple files can be opened simultaneously, a
maximum of 4 files can be open for writing at any given time.

When accessing files on the NXT, errors can occur. The NXC API defines several
constants that define possible result codes. They are listed in the following table.

FreeMemory()

Get the number of bytes of flash memory that are available for use.

Loader Result Codes Value
LDR_SUCCESS 0x0000
LDR_INPROGRESS 0x0001
LDR_REQPIN 0x0002
LDR_NOMOREHANDLES 0x8100
LDR_NOSPACE 0x8200
LDR_NOMOREFILES 0x8300
LDR_EOFEXPECTED 0x8400
LDR_ENDOFFILE 0x8500
LDR_NOTLINEARFILE 0x8600
LDR_FILENOTFOUND 0x8700
LDR_HANDLEALREADYCLOSED | 0x8800
LDR_NOLINEARSPACE 0x8900
LDR_UNDEFINEDERROR 0x8A00
LDR_FILEISBUSY 0x8B00
LDR_NOWRITEBUFFERS 0x8C00
LDR_APPENDNOTPOSSIBLE 0x8D00
LDR_FILEISFULL 0X8E00
LDR_FILEEXISTS 0X8F00
LDR_MODULENOTFOUND 0x9000
LDR_OUTOFBOUNDARY 0x9100
LDR_ILLEGALFILENAME 0x9200
LDR_ILLEGALHANDLE 0x9300
LDR_BTBUSY 0x9400
LDR_BTCONNECTFAIL 0x9500
LDR_BTTIMEOUT 0x9600
LDR_FILETX_TIMEOUT 0x9700
LDR_FILETX_DSTEXISTS 0x9800
LDR_FILETX_SRCMISSING 0x9900
LDR_FILETX_STREAMERROR 0x9A00
LDR_FILETX_CLOSEERROR 0x9B00

Table 35. Loader Result Codes

X = FreeMemory();

Value

Page 52

NXC Programmer's Guide

CreateFile(filename, size, out handle) Value

Create a new file with the specified filename and size and open it for writing. The file
handle is returned in the last parameter, which must be a variable. The loader result
code is returned as the value of the function call. The filename and size parameters
must be constants, constant expressions, or variables. A file created with a size of
zero bytes cannot be written to since the NXC file writing functions do not grow the
file if its capacity is exceeded during a write attempt.

result = CreateFile('data.txt', 1024, handle);

OpenFileAppend(filename, out size, out handle) Value

Open an existing file with the specified filename for writing. The file size is returned
in the second parameter, which must be a variable. The file handle is returned in the
last parameter, which must be a variable. The loader result code is returned as the
value of the function call. The filename parameter must be a constant or a variable.

result = OpenFileAppend('data.txt', fsize, handle);

OpenFileRead(filename, out size, out handle) Value

Open an existing file with the specified filename for reading. The file size is returned
in the second parameter, which must be a variable. The file handle is returned in the
last parameter, which must be a variable. The loader result code is returned as the
value of the function call. The filename parameter must be a constant or a variable.

result = OpenFileRead(*'data.txt', fsize, handle);

CloseFile(handle) Value

Close the file associated with the specified file handle. The loader result code is
returned as the value of the function call. The handle parameter must be a constant or
a variable.

result = CloseFile(handle);

ResolveHandle(filename, out handle, out bWriteable) Value

Resolve a file handle from the specified filename. The file handle is returned in the
second parameter, which must be a variable. A boolean value indicating whether the
handle can be used to write to the file or not is returned in the last parameter, which
must be a variable. The loader result code is returned as the value of the function call.
The filename parameter must be a constant or a variable.

result = ResolveHandle(*'data.txt', handle, bCanWrite);

Page 53

NXC Programmer's Guide

RenameFile(oldfilename, newfilename) Value

Rename a file from the old filename to the new filename. The loader result code is
returned as the value of the function call. The filename parameters must be constants
or variables.

result = RenameFile('data.txt", "mydata.txt');

DeleteFile(filename) Value

Delete the specified file. The loader result code is returned as the value of the
function call. The filename parameter must be a constant or a variable.

result = DeleteFile('data.txt'");

Read(handle, out value) Value

Read a numeric value from the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a variable. The type of the value parameter
determines the number of bytes of data read.

result = Read(handle, value);

ReadLn(handle, out value) Value

Read a numeric value from the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a variable. The type of the value parameter
determines the number of bytes of data read. The ReadLn function reads two
additional bytes from the file which it assumes are a carriage return and line feed pair.

result = ReadLn(handle, value);

ReadBytes(handle, in/out length, out buf) Value

Read the specified number of bytes from the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The length parameter must be a variable. The buf
parameter must be an array or a string variable. The actual number of bytes read is
returned in the length parameter.

result = ReadBytes(handle, len, buffer);

Write(handle, value) Value

Write a numeric value to the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a constant, a constant expression, or a
variable. The type of the value parameter determines the number of bytes of data
written.

result = Write(handle, value);

Page 54

NXC Programmer's Guide

WriteLn(handle, value) Value

Write a numeric value to the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a constant, a constant expression, or a
variable. The type of the value parameter determines the number of bytes of data
written. The WriteLn function also writes a carriage return and a line feed to the file
following the numeric data.

result = WriteLn(handle, value);

WriteString(handle, str, out count) Value

Write the string to the file associated with the specified handle. The loader result code
is returned as the value of the function call. The handle parameter must be a variable.
The count parameter must be a variable. The str parameter must be a string variable
or string constant. The actual number of bytes written is returned in the count
parameter.

result = WriteString(handle, ''testing', count);

WriteLnString(handle, str, out count) Value

Write the string to the file associated with the specified handle. The loader result code
is returned as the value of the function call. The handle parameter must be a variable.
The count parameter must be a variable. The str parameter must be a string variable
or string constant. This function also writes a carriage return and a line feed to the file
following the string data. The total number of bytes written is returned in the count
parameter.

result = WriteLnString(handle, 'testing', count);

WriteBytes(handle, data, out count) Value

Write the contents of the data array to the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The count parameter must be a variable. The data
parameter must be an array. The actual number of bytes written is returned in the
count parameter.

result = WriteBytes(handle, buffer, count);

WriteBytesEx(handle, in/out length, buf) Value

Write the specified number of bytes to the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The length parameter must be a variable. The buf
parameter must be an array or a string variable or string constant. The actual number
of bytes written is returned in the length parameter.

result = WriteByteskEx(handle, len, buffer);

Page 55

NXC Programmer's Guide

3.8.1 I0Map Offsets

Loader Module Offsets Value Size
LoaderOffsetPFunc 0 4
LoaderOffsetFreeUserFlash 4 4

Table 36. Loader Module IOMap Offsets

3.9 Command Module

The NXT command module encompasses support for the execution of user programs via
the NXT virtual machine. It also implements the direct command protocol support that
enables the NXT to respond to USB or Bluetooth requests from other devices such as a
PC or another NXT brick.

Module Constants | Value
CommandModuleName | "Command.mod"
CommandModulelD 0x00010001

Table 37. Command Module Constants

3.9.1 I0Map Offsets

Command Module Offsets Value Size
CommandOffsetFormatString 0 16
CommandOffsetPRCHandler 16 4
CommandOffsetTick 20 4
CommandOffsetOffsetDS 24 2
CommandOffsetOffsetDVA 26 2
CommandOffsetProgStatus 28 1
CommandOffsetAwake 29 1
CommandOffsetActivateFlag 30 1
CommandOffsetDeactivateFlag 31 1
CommandOffsetFileName 32 20
CommandOffsetMemoryPool 52 32k

Table 38. Command Module IOMap Offsets

3.10 Button Module

The NXT button module encompasses support for the 4 buttons on the NXT brick.

Module Constants | Value
ButtonModuleName "Button.mod"
ButtonModulelD 0x00040001

Table 39. Button Module Constants

Page 56

NXC Programmer's Guide

3.10.1 High-level functions

Valid button constant values are listed in the following table.

Button Constants Value
BTN1, BTNEXIT
BTN2, BTNRIGHT
BTN3, BTNLEFT
BTN4, BTNCENTER
NO_OF BTNS

Table 40. Button Constants

HlwIN|R(O

ButtonCount(btn, reset) Value

Return the number of times the specified button has been pressed since the last time
the button press count was reset. Optionally clear the count after reading it. Valid
values for the btn argument are listed in Table 40.

value = ButtonCount(BTN1, true);

ButtonPressed(btn, reset) Value

Return whether the specified button is pressed. Optionally clear the press count.
Valid values for the btn argument are listed in Table 40.

value = ButtonPressed(BTN1, true);

ReadButtonEx(btn, reset, out pressed, out count) Function

Read the specified button. Set the pressed and count parameters with the current state
of the button. Optionally reset the press count after reading it. Valid values for the
btn argument are listed in Table 40.

ReadButtonEx(BTN1, true, pressed, count);

3.10.2 Low-level functions
Valid button state values are listed in the following table.

Button State Constants Value
BTNSTATE_PRESSED EV 0x01
BTNSTATE_SHORT RELEASED EV | 0x02
BTNSTATE_LONG_PRESSED _EV 0x04
BTNSTATE_LONG_RELEASED EV | 0x08
BTNSTATE_PRESSED STATE 0x80

Table 41. Button State Constants

ButtonPressCount(btn) Value

Return the press count of the specified button. Valid values for the btn argument are
listed in Table 40.

value = ButtonPressCount(BTN1);

Page 57

NXC Programmer's Guide

SetButtonPressCount(btn, value) Function

Set the press count of the specified button. Valid values for the btn argument are
listed in Table 40.

SetButtonPressCount(BTN1, value);

ButtonLongPressCount(btn) Value

Return the long press count of the specified button. Valid values for the btn argument
are listed in Table 40.

value = ButtonLongPressCount(BTN1);

SetButtonLongPressCount(btn, value) Function

Set the long press count of the specified button. Valid values for the btn argument are
listed in Table 40.

SetButtonLongPressCount(BTN1, value);

ButtonShortReleaseCount(btn) Value

Return the short release count of the specified button. Valid values for the btn
argument are listed in Table 40.

value = ButtonShortReleaseCount(BTN1);

SetButtonShortReleaseCount(btn, value) Function

Set the short release count of the specified button. Valid values for the btn argument
are listed in Table 40.

SetButtonShortReleaseCount(BTN1, value);

ButtonLongReleaseCount(btn) Value

Return the long release count of the specified button. Valid values for the btn
argument are listed in Table 40.

value = ButtonLongReleaseCount(BTN1);

SetButtonLongReleaseCount(btn, value) Function

Set the long release count of the specified button. Valid values for the btn argument
are listed in Table 40.

SetButtonLongReleaseCount(BTN1, value);

ButtonReleaseCount(btn) Value

Return the release count of the specified button. Valid values for the btn argument
are listed in Table 40.

value = ButtonReleaseCount(BTN1);

Page 58

NXC Programmer's Guide

SetButtonReleaseCount(btn, value) Function

Set the release count of the specified button. Valid values for the btn argument are
listed in Table 40.

SetButtonReleaseCount(BTN1, value);

ButtonState(btn) Value

Return the state of the specified button. Valid values for the btn argument are listed
in Table 40. Button state values are listed in Table 41.

value = ButtonState(BTN1);

SetButtonState(btn, value) Function

Set the state of the specified button. Valid values for the btn argument are listed in
Table 40. Button state values are listed in Table 41.

SetButtonState(BTN1, BTNSTATE_PRESSED EV);

3.10.3 IOMap Offsets

Button Module Offsets Value Size
ButtonOffsetPressedCnt(b) (((b)*8)+0) 1
ButtonOffsetL ongPressCnt(b) (((b)*8)+1) 1
ButtonOffsetShortRelCnt(b) (((b)*8)+2) 1
ButtonOffsetL ongRelCnt(b) (((b)*8)+3) 1
ButtonOffsetRelCnt(b) (((b)*8)+4) 1
ButtonOffsetState(b) ((b)+32) 1*4

Table 42. Button Module IOMap Offsets

3.11 Ul Module

The NXT Ul module encompasses support for various aspects of the user interface for the
NXT brick.

Module Constants | Value
UlIModuleName "Ui.mod"
UlModulelD 0x000C0001

Table 43. Ul Module Constants

Valid command flag values are listed in the following table.

Page 59

NXC Programmer's Guide

Ul Command Flags Constants Value
Ul FLAGS_UPDATE 0x01
Ul FLAGS DISABLE_LEFT RIGHT ENTER | 0x02
Ul FLAGS DISABLE EXIT 0x04
Ul FLAGS_ REDRAW_STATUS 0x08
Ul FLAGS RESET_SLEEP_TIMER 0x10
Ul FLAGS_EXECUTE_LMS _FILE 0x20
Ul FLAGS BUSY 0x40
Ul FLAGS ENABLE_STATUS_UPDATE 0x80

Table 44. Ul Command Flags Constants
Valid Ul state values are listed in the following table.

Ul State Constants Value
Ul_STATE_INIT_DISPLAY 0
Ul_STATE_INIT_LOW_BATTERY 1
Ul_STATE_INIT_INTRO 2
Ul_STATE_INIT_WAIT 3
Ul_STATE_INIT_MENU 4
Ul_STATE_NEXT_MENU 5
Ul_STATE_DRAW_MENU 6
Ul_STATE_TEST BUTTONS 7
Ul_STATE_LEFT_PRESSED 8
Ul_STATE_RIGHT PRESSED 9
Ul_STATE_ENTER_PRESSED 10
Ul_STATE_EXIT_PRESSED 11
Ul_STATE_CONNECT REQUEST 12
Ul_STATE_EXECUTE_FILE 13
Ul_STATE_EXECUTING FILE 14
Ul_STATE_LOW BATTERY 15
Ul_STATE_BT _ERROR 16

Table 45. Ul State Constants
Valid Ul button values are listed in the following table.

Ul Button Constants Value
Ul BUTTON_NONE
Ul BUTTON_LEFT
Ul BUTTON_ENTER
Ul_BUTTON_RIGHT
Ul BUTTON_EXIT 5

Table 46. Ul Button Constants

AIWIN(F

Valid Ul Bluetooth state values are listed in the following table.

Ul Bluetooth State Constants | Value
Ul BT _STATE_VISIBLE 0x01
Ul_ BT _STATE_CONNECTED 0x02
Ul_ BT _STATE_OFF 0x04
Ul_ BT ERROR_ATTENTION 0x08
Ul_BT_CONNECT REQUEST 0x40
Ul BT _PIN_REQUEST 0x80

Table 47. Ul Bluetooth State Constants

Page 60

NXC Programmer's Guide

Volume() Value
Return the user interface volume level. Valid values are from 0 to 4.
X = Volume();

SetVolume(value) Function
Set the user interface volume level. Valid values are from 0 to 4.
SetVolume(3);
BatteryLevel() Value

Return the battery level in millivolts.
X = BatteryLevel();

BluetoothState() Value
Return the Bluetooth state. Valid Bluetooth state values are listed in Table 47.
X = BluetoothState();

SetBluetoothState(value) Function

Set the Bluetooth state. Valid Bluetooth state values are listed in Table 47.
SetBluetoothState(Ul BT STATE OFF);

CommandFlags() Value

Return the command flags. Valid command flag values are listed in Table 44.
X = CommandFlags(Q);

SetCommandFlags(value) Function
Set the command flags. Valid command flag values are listed in Table 44.
SetCommandFlags(Ul_FLAGS REDRAW_STATUS);

UlState() Value
Return the user interface state. Valid user interface state values are listed in Table 45.
x = UlState();

SetUIState(value) Function
Set the user interface state. Valid user interface state values are listed in Table 45.
SetUIState(Ul_STATE_LOW BATTERY);

Page 61

NXC Programmer's Guide

UlIButton()

Value

Return user interface button information. Valid user interface button values are listed

in Table 46.
x = UlButton();

SetUIButton(value)

Function

Set user interface button information. Valid user interface button values are listed in

Table 46.
SetUIButton(UI_BUTTON_ENTER);

VMRunState()

Return VM run state information.
X = VMRunState();

SetVMRunState(value)

Set VM run state information.
SetVWMRunState(0); // stopped

BatteryState()

Return battery state information (0..4).
X = BatteryState();

SetBatteryState(value)

Set battery state information.
SetBatteryState(4);

RechargeableBattery()

Return whether the NXT has a rechargeable battery installed or not.

x = RechargeableBattery();

ForceOff(n)

Force the NXT to turn off if the specified value is greater than zero.

ForceOff(true);

UsbState()

Return USB state information (O=disconnected, 1=connected, 2=working).

X = UsbState();

Value

Function

Value

Function

Value

Function

Value

Page 62

NXC Programmer's Guide

SetUsbState(value) Function
Set USB state information (O=disconnected, 1=connected, 2=working).
SetUsbState(2);
OnBrickProgramPointer() Value

Return the current OBP (on-brick program) step;
X = OnBrickProgramPointer();

SetOnBrickProgramPointer(value) Function
Set the current OBP (on-brick program) step.
SetOnBrickProgramPointer(2);

3.11.1 IOMap Offsets

Ul Module Offsets Value Size
UlOffsetPMenu 0 4
UIOffsetBatteryVoltage 4 2
UlOffsetLMSfilename 6 20
UlOffsetFlags 26 1
UlOffsetState 27 1
UlOffsetButton 28 1
UlOffsetRunState 29 1
UIOffsetBatteryState 30 1
UlOffsetBluetoothState 31 1
UlOffsetUsbState 32 1
UIOffsetSleepTimeout 33 1
UIOffsetSleepTimer 34 1
UlOffsetRechargeable 35 1
UlOffsetVolume 36 1
UIOffsetError 37 1
UlOffsetOBPPointer 38 1
UlOffsetForceOff 39 1

Table 48. Ul Module IOMap Offsets

3.12 LowSpeed Module

The NXT low speed module encompasses support for digital 12C sensor communication.

Module Constants | Value
LowSpeedModuleName | "Low Speed.mod"
LowSpeedModulelD 0x000B0001

Table 49. LowSpeed Module Constants

Use the lowspeed (aka 12C) communication methods to access devices that use the 12C
protocol on the NXT brick's four input ports.

Page 63

NXC Programmer's Guide

You must set the input port's Type property to SENSOR_TYPE_LOWSPEED or
SENSOR_TYPE_LOWSPEED_9V on a given port before using an 12C device on that port. Use
SENSOR_TYPE_LOWSPEED_9V if your device requires 9V power from the NXT brick.
Remember that you also need to set the input port's Inval idData property to true after
setting a new Type, and then wait in a loop for the NXT firmware to set InvalidData
back to false. This process ensures that the firmware has time to properly initialize the
port, including the 9V power lines, if applicable. Some digital devices might need
additional time to initialize after power up.

The SetSensorLowspeed API function sets the specified port to
SENSOR_TYPE_LOWSPEED_9V and calls ResetSensor to perform the InvalidData reset loop
described above.

When communicating with 12C devices, the NXT firmware uses a master/slave setup in
which the NXT brick is always the master device. This means that the firmware is
responsible for controlling the write and read operations. The NXT firmware maintains
write and read buffers for each port, and the three main Lowspeed (12C) methods
described below enable you to access these buffers.

A call to LowspeedWrite starts an asynchronous transaction between the NXT brick and
a digital 12C device. The program continues to run while the firmware manages sending
bytes from the write buffer and reading the response bytes from the device. Because the
NXT is the master device, you must also specify the number of bytes to expect from the
device in response to each write operation. You can exchange up to 16 bytes in each
direction per transaction.

After you start a write transaction with LowspeedWrite, use LowspeedStatus in a loop to
check the status of the port. If LowspeedStatus returns a status code of 0 and a count of
bytes available in the read buffer, the system is ready for you to use LowspeedRead to
copy the data from the read buffer into the buffer you provide.

Note that any of these calls might return various status codes at any time. A status code of
0 means the port is idle and the last transaction (if any) did not result in any errors.
Negative status codes and the positive status code 32 indicate errors. There are a few
possible errors per call.

Valid low speed return values are listed in the following table.

Low Speed Return Constants Value Meaning
NO ERR 0 The operation succeeded.
STAT_COMM_PENDING 32 The specified port is busy

performing a communication
transaction.

ERR_INVALID_SIZE -19 The specified buffer or byte
count exceeded the 16 byte limit.
ERR_COMM_CHAN_NOT_READY -32 The specified port is busy or
improperly configured.
ERR_COMM_CHAN_INVALID -33 The specified port is invalid. It
must be between 0 and 3.
ERR_COMM_BUS ERR -35 The last transaction failed,

possibly due to a device failure.

Table 50. Lowspeed (12C) Return Value Constants

Page 64

NXC Programmer's Guide

3.12.1 High-level functions

LowspeedWrite(port, returnlen, buffer) Value

This method starts a transaction to write the bytes contained in the array buffer to the
12C device on the specified port. It also tells the 12C device the number of bytes that
should be included in the response. The maximum number of bytes that can be
written or read is 16. The port may be specified using a constant (e.g., S1, S2, S3, or
S4) or a variable. Constants should be used where possible to avoid blocking access
to 12C devices on other ports by code running on other threads. Lowspeed return
values are listed in Table 50.

X = LowspeedWrite(S1l, 1, inbuffer);

LowspeedStatus(port, out bytesready) Value

This method checks the status of the 12C communication on the specified port. If the
last operation on this port was a successful LowspeedWrite call that requested
response data from the device then bytesready will be set to the number of bytes in
the internal read buffer. The port may be specified using a constant (e.g., S1, S2, S3,
or S4) or a variable. Constants should be used where possible to avoid blocking
access to 12C devices on other ports by code running on other threads. Lowspeed
return values are listed in Table 50. If the return value is 0 then the last operation did
not cause any errors. Avoid calls to LowspeedRead or LowspeedWrite while
LowspeedStatus returns STAT_COMM_PENDING.

X = LowspeedStatus(S1l, nRead);

LowspeedRead(port, buflen, out buffer) Value

Read the specified number of bytes from the 12C device on the specified port and
store the bytes read in the array buffer provided. The maximum number of bytes that
can be written or read is 16. The port may be specified using a constant (e.g., S1, S2,
S3, or S4) or a variable. Constants should be used where possible to avoid blocking
access to 12C devices on other ports by code running on other threads. Lowspeed
return values are listed in Table 50. If the return value is negative then the output
buffer will be empty.

X = LowspeedRead(S1, 1, outbuffer);

I2CWrite(port, returnlen, buffer) Value

This is an alias for LowspeedWrite.
X = 12CWrite(S1, 1, inbuffer);

I2CStatus(port, out bytesready) Value

This is an alias for LowspeedStatus.
X = 12CStatus(S1l, nRead);

Page 65

NXC Programmer's Guide

I2CRead(port, buflen, out buffer) Value

This is an alias for LowspeedRead.
X = 12CRead(S1, 1, outbuffer);

12CBytes(port, inbuf, in/out count, out outbuf) Value

This method writes the bytes contained in the input buffer (inbuf) to the 12C device
on the specified port, checks for the specified number of bytes to be ready for
reading, and then tries to read the specified number (count) of bytes from the 12C
device into the output buffer (outbuf). The port may be specified using a constant
(e.g., S1, S2, S3, or S4) or a variable. Returns true or false indicating whether the
12C read process succeeded or failed.

This is a higher-level wrapper around the three main 12C functions. It also maintains
a "last good read" buffer and returns values from that buffer if the 12C
communication transaction fails.

X = 12CBytes(S4, writebuf, cnt, readbuf);

3.12.2 Low-level functions
Valid low speed state values are listed in the following table.

Low Speed State Constants Value
COM_CHANNEL_NONE_ACTIVE 0x00
COM_CHANNEL_ONE_ACTIVE 0x01
COM_CHANNEL_TWO_ACTIVE 0x02
COM_CHANNEL_THREE_ACTIVE 0x04
COM_CHANNEL_NONE_ACTIVE 0x08

Table 51. Low Speed State Constants
Valid low speed channel state values are listed in the following table.

Low Speed Channel State Constants | Value
LOWSPEED_IDLE 0
LOWSPEED_INIT 1
LOWSPEED_LOAD_BUFFER 2
LOWSPEED_COMMUNICATING 3
LOWSPEED_ERROR 4
LOWSPEED_DONE 5

Table 52. Low Speed Channel State Constants
Valid low speed mode values are listed in the following table.

Low Speed Mode Constants Value
LOWSPEED_TRANSMITTING 1
LOWSPEED_RECEIVING 2
LOWSPEED_DATA_RECEIVED 3

Table 53. Low Speed Mode Constants

Page 66

NXC Programmer's Guide

Valid low speed error type values are listed in the following table.

Low Speed Error Type Constants Value
LOWSPEED_NO_ERROR 0
LOWSPEED_CH_NOT_READY 1
LOWSPEED_TX_ERROR 2
LOWSPEED_RX_ERROR 3

Table 54. Low Speed Error Type Constants

GetLSInputBuffer(port, offset, count, out data) Function

This method reads data from the lowspeed input buffer associated with the specified
port.

GetLSInputBuffer(S1, 0, 8, buffer);

SetLSInputBuffer(port, offset, count, data) Function

This method writes data to the lowspeed input buffer associated with the specified
port.

SetLSInputBuffer(S1, 0, 8, data);

GetLSOutputBuffer(port, offset, count, out data) Function

This method reads data from the lowspeed output buffer associated with the specified
port.

GetLSOutputBuffer(S1, 0, 8, outbuffer);

SetLSOutputBuffer(port, offset, count, data) Function

This method writes data to the lowspeed output buffer associated with the specified
port.

SetLSOutputBuffer(S1, 0, 8, data);

LSInputBufferInPtr(port) Value

This method returns the value of the input pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

X = LSInputBufferInPtr(S1);

SetLSInputBufferInPtr(port) Function

This method sets the value of the input pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSInputBufferInPtr(S1, x);

Page 67

NXC Programmer's Guide

LSInputBufferOutPtr(port) Value

This method returns the value of the output pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

X = LSInputBufferOutPtr(Sl1);

SetLSInputBufferOutPtr(port) Function

This method sets the value of the output pointer for the lowspeed input buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSInputBufferOutPtr(S1, Xx);

LSInputBufferBytesToRx(port) Value

This method returns the bytes to receive for the lowspeed input buffer associated with
the specified port. The port must be a constant (S1..54).

X = LSInputBufferBytesToRx(S1);

SetLSInputBufferBytesToRx(port) Function

This method sets the bytes to receive for the lowspeed input buffer associated with
the specified port. The port must be a constant (S1..54).

SetLSInputBufferBytesToRx(S1, x);

LSOutputBufferInPtr(port) Value

This method returns the value of the input pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

X = LSOutputBufferiInPtr(S1);

SetLSOutputBufferInPtr(port) Function

This method sets the value of the input pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSOutputBufferInPtr(S1, Xx);

LSOutputBufferOutPtr(port) Value

This method returns the value of the output pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

X = LSOutputBufferOutPtr(Sl1);

SetLSOutputBufferOutPtr(port) Function

This method sets the value of the output pointer for the lowspeed output buffer
associated with the specified port. The port must be a constant (S1..S4).

SetLSOutputBufferOutPtr(S1, x);

Page 68

NXC Programmer's Guide

LSOutputBufferBytesToRx(port) Value

This method returns the bytes to receive for the lowspeed output buffer associated
with the specified port. The port must be a constant (S1..S4).

X = LSOutputBufferBytesToRx(S1);

SetLSOutputBufferBytesToRx(port) Function

This method sets the bytes to receive for the lowspeed output buffer associated with
the specified port. The port must be a constant (S1..54).

SetLSOutputBufferBytesToRx(S1, X);

LSMode(port) Value

This method returns the mode of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

X = LSMode(S1);

SetLSMode(port) Function

This method sets the mode of the lowspeed communication over the specified port.
The port must be a constant (S1..54).

SetLSMode(S1, LOWSPEED TRANSMITTING);

LSChannelState(port) Value

This method returns the channel state of the lowspeed communication over the
specified port. The port must be a constant (S1..54).

X = LSChannelState(Sl);

SetLSChannelState(port) Function

This method sets the channel state of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

SetLSChannelState(S1, LOWSPEED IDLE);

LSErrorType(port) Value

This method returns the error type of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

X = LSErrorType(Sl1);

SetLSErrorType(port) Function

This method sets the error type of the lowspeed communication over the specified
port. The port must be a constant (S1..S4).

SetLSErrorType(S1, LOWSPEED_CH_NOT_READY);

Page 69

NXC Programmer's Guide

LSState()

This method returns the state of the lowspeed module.
X = LSState();

SetL.SState(n)

This method sets the state of the lowspeed module.
SetlLSState(COM_CHANNEL_THREE_ACTIVE) ;

LSSpeed()

This method returns the speed of the lowspeed module.
X = LSSpeed();

SetL.SSpeed(n)

This method sets the speed of the lowspeed module.
SetlLSSpeed(100) ;

3.12.3 IOMap Offsets

Value

Function

Value

Function

LowSpeed Module Offsets Value Size
LowSpeedOffsetinBufBuf(p) (((p)*19)+0) 16
LowSpeedOffsetinBuflnPtr(p) (((p)*19)+16) 1
LowSpeedOffsetinBufOutPtr(p) (((p)*19)+17) 1
LowSpeedOffsetinBufBytesToRx(p) (((p)*19)+18) 58
LowSpeedOffsetOutBufBuf(p) (((p)*19)+76) 16
LowSpeedOffsetOutBufInPtr(p) (((p)*19)+92) 1
LowSpeedOffsetOutBufOutPtr(p) (((p)*19)+93) 1
LowSpeedOffsetOutBufBytesToRx(p) | (((p)*19)+94) 58
LowSpeedOffsetMode(p) ((p)+152) 4
LowSpeedOffsetChannelState(p) ((p)+156) 4
LowSpeedOffsetErrorType(p) ((p)+160) 4
LowSpeedOffsetState 164 1
LowSpeedOffsetSpeed 165 1
LowSpeedOffsetSpare 166 1

Table 55. LowSpeed Module IOMap Offsets

3.13 Comm Module

The NXT comm module encompasses support for all forms of Bluetooth, USB, and

HiSpeed communication.

Module Constants | Value

CommModuleName "Comm.mod"

CommModulelD 0x00050001

Table 56. Comm Module Constants

Page 70

NXC Programmer's Guide

You can use the Bluetooth communication methods to send information to other devices
connected to the NXT brick. The NXT firmware also implements a message queuing or
mailbox system which you can access using these methods.

Communication via Bluetooth uses a master/slave connection system. One device must
be designated as the master device before you run a program using Bluetooth. If the NXT
is the master device then you can configure up to three slave devices using connection 1,
2, and 3 on the NXT brick. If your NXT is a slave device then connection 0 on the brick
must be reserved for the master device.

Programs running on the master NXT brick can send packets of data to any connected
slave devices using the BluetoothWrite method. Slave devices write response packets to
the message queuing system where they wait for the master device to poll for the
response.

Using the direct command protocol, a master device can send messages to slave NXT
bricks in the form of text strings addressed to a particular mailbox. Each mailbox on the
slave NXT brick is a circular message queue holding up to five messages. Each message
can be up to 58 bytes long.

To send messages from a master NXT brick to a slave brick, use BluetoothWrite on the
master brick to send a MessageWrite direct command packet to the slave. Then, you can
use ReceiveMessage on the slave brick to read the message. The slave NXT brick must
be running a program when an incoming message packet is received. Otherwise, the slave
NXT brick ignores the message and the message is dropped.

3.13.1 High-level functions

SendRemoteBool(connection, queue, bvalue) Value

This method sends a boolean value to the device on the specified connection. The
message containing the boolean value will be written to the specified queue on the
remote brick.

X = SendRemoteBool (1, queue, false);

SendRemoteNumber(connection, queue, value) Value

This method sends a numeric value to the device on the specified connection. The
message containing the numeric value will be written to the specified queue on the
remote brick.

X = SendRemoteNumber(1l, queue, 123);

SendRemoteString(connection, queue, strval) Value

This method sends a string value to the device on the specified connection. The
message containing the string value will be written to the specified queue on the
remote brick.

X = SendRemoteString(1l, queue, “hello world™);

Page 71

NXC Programmer's Guide

SendResponseBool(queue, bvalue) Value

This method sends a boolean value as a response to a received message. The message
containing the boolean value will be written to the specified queue (+10) on the slave
brick so that it can be retrieved by the master brick via automatic polling.

X = SendResponseBool (queue, false);

SendResponseNumber(queue, value) Value

This method sends a numeric value as a response to a received message. The
message containing the numeric value will be written to the specified queue (+10) on
the slave brick so that it can be retrieved by the master brick via automatic polling.

X = SendResponseNumber(queue, 123);

SendResponseString(queue, strval) Value

This method sends a string value as a response to a received message. The message
containing the string value will be written to the specified queue (+10) on the slave
brick so that it can be retrieved by the master brick via automatic polling.

X = SendResponseString(queue, "hello world'™);

ReceiveRemoteBool(queue, remove, out bvalue) Value

This method is used on a master brick to receive a boolean value from a slave device
communicating via a specific mailbox or message queue. Optionally remove the last
read message from the message queue depending on the value of the boolean remove
parameter.

X = ReceilveRemoteBool (queue, true, bvalue);

ReceiveRemoteNumber(queue, remove, out value) Value

This method is used on a master brick to receive a numeric value from a slave device
communicating via a specific mailbox or message queue. Optionally remove the last
read message from the message queue depending on the value of the boolean remove
parameter.

X = ReceilveRemoteBool (queue, true, value);

ReceiveRemoteString(queue, remove, out strval) Value

This method is used on a master brick to receive a string value from a slave device
communicating via a specific mailbox or message queue. Optionally remove the last
read message from the message queue depending on the value of the boolean remove
parameter.

X = RecelveRemoteString(queue, true, strval);

Page 72

NXC Programmer's Guide

ReceiveRemoteMessageEx(queue, remove, out strval, out val, out bval)Value

This method is used on a master brick to receive a string, boolean, or numeric value
from a slave device communicating via a specific mailbox or message queue.
Optionally remove the last read message from the message queue depending on the
value of the boolean remove parameter.

X = RecelveRemoteMessageEx(queue, true, strval, val, bval);

SendMessage(queue, msg) Value

This method writes the message buffer contents to the specified mailbox or message
queue. The maximum message length is 58 bytes.

X = SendMessage(mbox, data);

ReceiveMessage(queue, remove, out buffer) Value

This method retrieves a message from the specified queue and writes it to the buffer
provided. Optionally removes the last read message from the message queue
depending on the value of the boolean remove parameter.

X = RecleveMessage(mbox, true, buffer);

BluetoothStatus(connection) Value

This method returns the status of the specified Bluetooth connection. Avoid calling
BluetoothWrite or any other API function that writes data over a Bluetooth
connection while BluetoothStatus returns STAT_COMM_PENDING.

x = BluetoothStatus(1);

BluetoothWrite(connection, buffer) Value

This method tells the NXT firmware to write the data in the buffer to the device on
the specified Bluetooth connection. Use BluetoothStatus to determine when this
write request is completed.

X = BluetoothWrite(l, data);

RemoteMessageRead(connection, queue) Value

This method sends a MessageRead direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteMessageRead(1l, 5);

RemoteMessageWrite(connection, queue, msg) Value

This method sends a MessageWrite direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteMessageWrite(l, 5, "test');

Page 73

NXC Programmer's Guide

RemoteStartProgram(connection, filename) Value

This method sends a StartProgram direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteStartProgram(1l, 'myprog.rxe');

RemoteStopProgram(connection) Value

This method sends a StopProgram direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteStopProgram(l);

RemotePlaySoundFile(connection, filename, bLoop) Value

This method sends a PlaySoundFile direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemotePlaySoundFile(1, "click.rso", false);

RemotePlayTone(connection, frequency, duration) Value

This method sends a PlayTone direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemotePlayTone(1, 440, 1000);

RemoteStopSound(connection) Value

This method sends a StopSound direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteStopSound(1);

RemoteKeepAlive(connection) Value

This method sends a KeepAlive direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteKeepAlive(1);

RemoteResetScaledValue(connection, port) Value

This method sends a ResetScaledValue direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteResetScaledvalue(1, S1);

RemoteResetMotorPosition(connection, port, bRelative) Value

This method sends a ResetMotorPosition direct command to the device on the
specified connection. Use BluetoothStatus to determine when this write request is
completed.

X = RemoteResetMotorPosition(1, OUT A, true);

Page 74

NXC Programmer's Guide

RemoteSetInputMode(connection, port, type, mode) Value

This method sends a SetInputMode direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteSetlnputMode(1, S1,
IN_TYPE_LOWSPEED, IN_MODE_RAW);

RemoteSetOutputState(connection, port, speed, mode, regmode,
turnpct, runstate, tacholimit) Value

This method sends a SetOutputState direct command to the device on the specified
connection. Use BluetoothStatus to determine when this write request is completed.

X = RemoteSetOutputState(1, OUT_A, 75, OUT_MODE_MOTORON,
OUT_REGMODE_IDLE, O, OUT_RUNSTATE_RUNNING, 0);

3.13.2 Low-level functions
Valid miscellaneous constant values are listed in the following table.

Comm Miscellaneous Constants Value
SIZE_OF USBBUF 64
USB_PROTOCOL_OVERHEAD 2
SIZE_OF USBDATA 62
SIZE_OF HSBUF 128
SIZE_OF BTBUF 128
BT CMD BYTE 1
SIZE_OF BT DEVICE_TABLE 30
SIZE_OF BT_CONNECT TABLE 4
SIZE_OF BT_NAME 16
SIZE_OF BRICK_NAME 8
SIZE_OF CLASS OF DEVICE 4
SIZE_OF BDADDR 7
MAX_BT_MSG_SIZE 60000
BT _DEFAULT INQUIRY MAX 0
BT _DEFAULT INQUIRY TIMEOUT LO 15
LR_SUCCESS 0x50
LR _COULD NOT SAVE 0x51
LR _STORE_IS FULL 0x52
LR_ENTRY_REMOVED 0x53
LR_UNKNOWN_ADDR 0x54
USB_CMD_READY 0x01
BT CMD_READY 0x02
HS CMD_READY 0x04

Table 57. Comm Miscellaneous Constants

Page 75

NXC Programmer's Guide

Valid BtState values are listed in the following table.

Comm BtState Constants Value
BT _ARM_OFF 0
BT ARM_CMD_ MODE 1
BT _ARM DATA MODE 2

Table 58. Comm BtState Constants
Valid BtStateStatus values are listed in the following table.

Comm BtStateStatus Constants Value
BT BRICK_VISIBILITY 0x01
BT BRICK _PORT OPEN 0x02
BT _CONNECTION 0 ENABLE 0x10
BT _CONNECTION_ 1 ENABLE 0x20
BT _CONNECTION_ 2 ENABLE 0x40
BT _CONNECTION_ 3 ENABLE

Table 59. Comm BtStateStatus Constants
Valid BtHwStatus values are listed in the following table.

Comm BtHwStatus Constants Value
BT ENABLE 0x00
BT _DISABLE 0x01

Table 60. Comm BtHwStatus Constants
Valid HsFlags values are listed in the following table.

Comm HsFlags Constants Value

HS_UPDATE 1

Table 61. Comm HsFlags Constants
Valid HsState values are listed in the following table.

Comm HsState Constants Value

HS_INITIALISE 1

HS_INIT_RECEIVER

HS_SEND_DATA

HlwiN

HS_DISABLE

Table 62. Comm HsState Constants
Valid DeviceStatus values are listed in the following table.

Comm DeviceStatus Constants Value
BT _DEVICE_EMPTY 0x00
BT_DEVICE_UNKNOWN 0x01
BT _DEVICE_KNOWN 0x02
BT_DEVICE_NAME 0x40
BT _DEVICE_AWAY 0x80

Table 63. Comm DeviceStatus Constants

Page 76

NXC Programmer's Guide

Valid module interface values are listed in the following table.

Comm Module Interface Constants Value
INTF_SENDFILE 0
INTF_SEARCH 1
INTF_STOPSEARCH 2
INTF_CONNECT 3
INTF_DISCONNECT 4
INTF_DISCONNECTALL 5
INTF_ REMOVEDEVICE 6
INTF_VISIBILITY 7
INTF_SETCMDMODE 8
INTF_OPENSTREAM 9
INTF_SENDDATA 10
INTF_FACTORYRESET 11
INTF_BTON 12
INTF_BTOFF 13
INTF_SETBTNAME 14
INTF_EXTREAD 15
INTF_PINREQ 16
INTF_CONNECTREQ 17

Table 64. Comm Module Interface Constants

3.13.2.1 USB functions

GetUSBInputBuffer(offset, count, out data) Function

This method reads count bytes of data from the USB input buffer at the specified
offset and writes it to the buffer provided.

GetUSBInputBuffer(0, 10, buffer);

SetUSBInputBuffer(offset, count, data) Function

This method writes count bytes of data to the USB input buffer at the specified offset.
SetUSBInputBuffer(0, 10, buffer);

SetUSBInputBufferinPtr(n) Function

This method sets the input pointer of the USB input buffer to the specified value.
SetUSBInputBufferInPtr(0);

USBInputBufferinPtr() Value

This method returns the value of the input pointer of the USB input buffer.
byte x = USBInputBufferInPtr();

SetUSBInputBufferOutPtr(n) Function

This method sets the output pointer of the USB input buffer to the specified value.
SetUSBInputBufferOutPtr(0);

Page 77

NXC Programmer's Guide

USBInputBufferOutPtr() Value

This method returns the value of the output pointer of the USB input buffer.
byte x = USBInputBufferOutPtr();

GetUSBOutputBuffer(offset, count, out data) Function

This method reads count bytes of data from the USB output buffer at the specified
offset and writes it to the buffer provided.

GetUSBOutputBuffer(0, 10, buffer);

SetUSBOutputBuffer(offset, count, data) Function

This method writes count bytes of data to the USB output buffer at the specified
offset.

SetUSBOutputBuffer(0, 10, buffer);

SetUSBOutputBufferInPtr(n) Function

This method sets the input pointer of the USB output buffer to the specified value.
SetUSBOutputBufferInPtr(0);

USBOutputBufferIinPtr() Value

This method returns the value of the input pointer of the USB output buffer.
byte x = USBOutputBufferInPtr(;

SetUSBOutputBufferOutPtr(n) Function

This method sets the output pointer of the USB output buffer to the specified value.
SetUSBOutputBufferOutPtr(0);

USBOutputBufferOutPtr() Value

This method returns the value of the output pointer of the USB output buffer.
byte x = USBOutputBufferOutPtr();

GetUSBPollBuffer(offset, count, out data) Function

This method reads count bytes of data from the USB poll buffer and writes it to the
buffer provided.

GetUSBPol IBuffer(0, 10, buffer);

SetUSBPollBuffer(offset, count, data) Function

This method writes count bytes of data to the USB poll buffer at the specified offset.
SetUSBPol IBuffer(0, 10, buffer);

Page 78

NXC Programmer's Guide

SetUSBPollBufferInPtr(n) Function

This method sets the input pointer of the USB poll buffer to the specified value.
SetUSBPol IBufferInPtr(0);

USBPolIBufferInPtr() Value

This method returns the value of the input pointer of the USB poll buffer.
byte x = USBPollIBufferInPtr();

SetUSBPollBufferOutPtr(n) Function

This method sets the output pointer of the USB poll buffer to the specified value.
SetUSBPol IBufferOutPtr(0);

USBPolIBufferOutPtr() Value

This method returns the value of the output pointer of the USB poll buffer.
byte x = USBPolIBufferOutPtr();

SetUSBState(n) Function
This method sets the USB state to the specified value.
SetUSBState(0);
USBState() Value

This method returns the USB state.
byte x = USBPolIBufferOutPtr();

3.13.2.2 High Speed port functions

GetHSInputBuffer(offset, count, out data) Function

This method reads count bytes of data from the High Speed input buffer and writes it
to the buffer provided.

GetHSInputBuffer(0, 10, buffer);

SetHSInputBuffer(offset, count, data) Function

This method writes count bytes of data to the High Speed input buffer at the specified
offset.

SetHSInputBuffer(0, 10, buffer);

Page 79

NXC Programmer's Guide

SetHSInputBufferinPtr(n) Function

This method sets the input pointer of the High Speed input buffer to the specified
value.

SetHSInputBufferInPtr(0);

HSInputBufferinPtr() Value

This method returns the value of the input pointer of the High Speed input buffer.
byte x = HSInputBufferInPtr();

SetHSInputBufferOutPtr(n) Function

This method sets the output pointer of the High Speed input buffer to the specified
value.

SetHSInputBufferOutPtr(0);

HSInputBufferOutPtr() Value

This method returns the value of the output pointer of the High Speed input buffer.
byte x = HSInputBufferOutPtr();

GetHSOutputBuffer(offset, count, out data) Function

This method reads count bytes of data from the High Speed output buffer and writes
it to the buffer provided.

GetHSOutputBuffer(0, 10, buffer);

SetHSOutputBuffer(offset, count, data) Function

This method writes count bytes of data to the High Speed output buffer at the
specified offset.

SetHSOutputBuffer(0, 10, buffer);

SetHSOutputBufferInPtr(n) Function

This method sets the Output pointer of the High Speed output buffer to the specified
value.

SetHSOutputBufferInPtr(0);

HSOutputBufferInPtr() Value

This method returns the value of the Output pointer of the High Speed output buffer.
byte x = HSOutputBufferInPtr();

Page 80

NXC Programmer's Guide

SetHSOutputBufferOutPtr(n)

Function

This method sets the output pointer of the High Speed output buffer to the specified

value.
SetHSOutputBufferOutPtr(0);

HSOutputBufferOutPtr()

Value

This method returns the value of the output pointer of the High Speed output buffer.

byte x = HSOutputBufferOutPtr();

SetHSFlags(n)

This method sets the High Speed flags to the specified value.
SetHSFlags(0);

HSFlags()
This method returns the value of the High Speed flags.
byte x = HSFlagsQ);

SetHSSpeed(n)

This method sets the High Speed speed to the specified value.

SetHSSpeed(1);

HSSpeed()
This method returns the value of the High Speed speed.
byte x = HSSpeed();

SetHSState(n)

This method sets the High Speed state to the specified value.
SetHSState(l);

HSState()

This method returns the value of the High Speed state.
byte x = HSState();

3.13.2.3 Bluetooth functions
GetBT InputBuffer(offset, count, out data)

Function

Value

Function

Value

Function

Value

Function

This method reads count bytes of data from the Bluetooth input buffer and writes it to

the buffer provided.
GetBTInputBuffer(0, 10, buffer);

Page 81

NXC Programmer's Guide

SetBT InputBuffer(offset, count, data) Function

This method writes count bytes of data to the Bluetooth input buffer at the specified
offset.

SetBTInputBuffer(0, 10, buffer);

SetBTInputBufferinPtr(n) Function

This method sets the input pointer of the Bluetooth input buffer to the specified value.
SetBTInputBufferInPtr(0);

BTInputBufferinPtr() Value

This method returns the value of the input pointer of the Bluetooth input buffer.
byte x = BTInputBufferInPtr();

SetBTInputBufferOutPtr(n) Function

This method sets the output pointer of the Bluetooth input buffer to the specified
value.

SetBTInputBufferOutPtr(0);

BT InputBufferOutPtr() Value

This method returns the value of the output pointer of the Bluetooth input buffer.
byte x = BTInputBufferOutPtr();

GetBTOutputBuffer(offset, count, out data) Function

This method reads count bytes of data from the Bluetooth output buffer and writes it
to the buffer provided.

GetBTOutputBuffer(0, 10, buffer);

SetBTOutputBuffer(offset, count, data) Function

This method writes count bytes of data to the Bluetooth output buffer at the specified
offset.

SetBTOutputBuffer(0, 10, buffer);

SetBTOutputBufferinPtr(n) Function

This method sets the input pointer of the Bluetooth output buffer to the specified
value.

SetBTOutputBuffernPtr(0);

Page 82

NXC Programmer's Guide

BTOutputBufferinPtr() Value

This method returns the value of the input pointer of the Bluetooth output buffer.
byte x = BTOutputBufferInPtr();

SetBTOutputBufferOutPtr(n) Function

This method sets the output pointer of the Bluetooth output buffer to the specified
value.

SetBTOutputBufferOutPtr(0);

BTOutputBufferOutPtr() Value

This method returns the value of the output pointer of the Bluetooth output buffer.
byte x = BTOutputBufferOutPtr();

BTDeviceCount() Value

This method returns the number of devices defined within the Bluetooth device table.
byte x = BTDeviceCount();

BTDeviceNameCount() Value

This method returns the number of device names defined within the Bluetooth device
table. This usually has the same value as BTDeviceCount but it can differ in some
instances.

byte x = BTDeviceNameCount();

BTDeviceName(idx) Value

This method returns the name of the device at the specified index in the Bluetooth
device table.

string name = BTDeviceName(0);

BT ConnectionName(idx) Value

This method returns the name of the device at the specified index in the Bluetooth
connection table.

string name = BTConnectionName(0);

BT ConnectionPinCode(idx) Value

This method returns the pin code of the device at the specified index in the Bluetooth
connection table.

string pincode = BTConnectionPinCode(0);

Page 83

NXC Programmer's Guide

BrickDataName() Value

This method returns the name of the NXT.
string name = BrickDataName();

GetBTDeviceAddress(idx, out data) Function

This method reads the address of the device at the specified index within the
Bluetooth device table and stores it in the data buffer provided.

GetBTDeviceAddress(0, buffer);

GetBTConnectionAddress(idx, out data) Function

This method reads the address of the device at the specified index within the
Bluetooth connection table and stores it in the data buffer provided.

GetBTConnectionAddress(0, buffer);

GetBrickDataAddress(out data) Function

This method reads the address of the NXT and stores it in the data buffer provided.
GetBrickDataAddress(buffer);

BTDeviceClass(idx) Value

This method returns the class of the device at the specified index within the Bluetooth
device table.

long class = BTDeviceClass(idx);

BTDeviceStatus(idx) Value

This method returns the status of the device at the specified index within the
Bluetooth device table.

byte status = BTDeviceStatus(idx);

BT ConnectionClass(idx) Value

This method returns the class of the device at the specified index within the Bluetooth
connection table.

long class = BTConnectionClass(idx);

BT ConnectionHandleNum(idx) Value

This method returns the handle number of the device at the specified index within the
Bluetooth connection table.

byte handlenum = BTConnectionHandleNum(idx);

Page 84

NXC Programmer's Guide

BTConnectionStreamStatus(idx)

Value

This method returns the stream status of the device at the specified index within the

Bluetooth connection table.

byte streamstatus = BTConnectionStreamStatus(idx);

BTConnectionLinkQuality(idx)

Value

This method returns the link quality of the device at the specified index within the

Bluetooth connection table.

byte linkquality = BTConnectionLinkQuality(idx);

BrickDataBluecoreVersion()

This method returns the bluecore version of the NXT.

int bv = BrickDataBluecoreVersion();

BrickDataBtStateStatus()

This method returns the Bluetooth state status of the NXT.

int x = BrickDataBtStateStatus();

BrickDataBtHardwareStatus()

This method returns the Bluetooth hardware status of the NXT.

int X = BrickDataBtHardwareStatus();

BrickDataTimeoutValue()

This method returns the timeout value of the NXT.

int x = BrickDataTimeoutValue();

3.13.3 IOMap Offsets

Value

Value

Value

Value

Comm Module Offsets Value Size
CommOffsetPFunc 0 4
CommOffsetPFuncTwo 4 4
CommOffsetBtDeviceTableName(p) (((p)*31)+8) 16
CommOffsetBtDeviceTableClassOfDevice(p) (((p)*31)+24) 4
CommOffsetBtDeviceTableBdAddr(p) (((p)*31)+28) 7
CommOffsetBtDeviceTableDeviceStatus(p) (((p)*31)+35) 1
CommOffsetBtConnectTableName(p) (((p)*47)+938) 16
CommOffsetBtConnectTableClassOfDevice (p) (((p)*47)+954) 4
CommOffsetBtConnectTablePinCode(p) (((p)*47)+958) 16
CommOffsetBtConnectTableBdAddr(p) (((p)*47)+974) 7
CommOffsetBtConnectTableHandleNr(p) (((p)*47)+981) 1
CommOffsetBtConnectTableStreamStatus(p) (((p)*47)+982) 1
CommOffsetBtConnectTableLinkQuality(p) (((p)*47)+983) 1
CommOffsetBtConnectTableSpare(p) (((p)*47)+984) 1
CommOffsetBrickDataName 1126 16

Page 85

NXC Programmer's Guide

CommOffsetBrickDataBluecoreVersion 1142 2
CommOffsetBrickDataBdAddr 1144 7
CommOffsetBrickDataBtStateStatus 1151 1
CommOffsetBrickDataBtHwStatus 1152 1
CommOffsetBrickDataTimeOutValue 1153 1
CommOffsetBtInBufBuf 1157 128
CommOffsetBtInBufInPtr 1285 1
CommOffsetBtInBufOutPtr 1286 1
CommOffsetBtOutBufBuf 1289 128
CommOffsetBtOutBufInPtr 1417 1
CommOffsetBtOutBufOutPtr 1418 1
CommOffsetHsInBufBuf 1421 128
CommOffsetHsInBufInPtr 1549 1
CommOffsetHsInBufOutPtr 1549 1
CommOffsetHsOutBufBuf 1553 128
CommOffsetHsOutBufinPtr 1681 1
CommOffsetHsOutBufOutPtr 1682 1
CommOffsetUsbInBufBuf 1685 64
CommOffsetUsbInBufinPtr 1749 1
CommOffsetUsbInBufOutPtr 1750 1
CommOffsetUsbOutBufBuf 1753 64
CommOffsetUsbOutBufinPtr 1817 1
CommOffsetUsbOutBufOutPtr 1818 1
CommOffsetUsbPollBufBuf 1821 64
CommOffsetUsbPollBufinPtr 1885 1
CommOffsetUsbPollBufOutPtr 1886 1
CommOffsetBtDeviceCnt 1889 1
CommOffsetBtDeviceNameCnt 1890 1
CommOffsetHsFlags 1891 1
CommOffsetHsSpeed 1892 1
CommOffsetHsState 1893 1
CommOffsetUsbState 1894 1

Table 65. Comm Module IOMap Offsets

Page 86

